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Abstract – This paper introduces a method

for the analytical calculation of gradients

of a cost functions which is an attractive

feature when optimizing microwave

structures using field solvers. In contrast to

utilizing finite differencing all gradients

are computed from a single analysis of the

structure regardless of its complexity. It is

not even necessary to invert a large matrix;

a linear system [A]{x}={b} is solved

instead. No remeshing is required in the

FEM and the gradient values are exact.

The basic technique used in this new

approach is applied to the optimization of

H-Plane filters using the FEM.

I. INTRODUCTION

Evaluating the gradient of a cost function for

the optimization of microwave circuits is

usually based on the finite difference

technique and can be a time consuming task.

This is especially true when the circuit

transfer function is calculated on the basis of

a field-theory simulation tool since always

two computations are necessary for one

gradient. If, in addition, the number of

independent variables is large, optimization

can become an impossible task. In this

contribution it will be shown that, under

certain circumstances, the gradient of a cost

function can be calculated analytically

without using finite differences. The number

of computations can be cut in half and well

known disadvantages with finite differencing

like inaccuracies at singularities in highly

resonant structures are eliminated. The

method has been applied successfully to the

coupled integral equation technique (CIET)

and the finite element method (FEM).

Analytical calculation of the cost function is

also possible with the adjoint network method

(ANM) but requires a network representation

of the structure to be optimized (and its

adjoint). The mode matching technique

(MMT) to calculate the fields is normally

utilized to extract the network's representation

in form of the admittance or scattering matrix.

The ANM has been successfully applied to

the optimization of filters and radiating

structures.

Analytically calculating the gradient of a cost

function directly in general numerical

techniques without first deriving a network

representation has not been published before.

The possibility of doing so is of great interest

as it offers a number of obvious advantages

and also not so obvious ones, depending on

the numerical method used. The new

approach can not be applied to all numerical

field computation methods since it requires a

scattering problem representation of the

whole micro-wave structure of the form

which results directly from applying the FEM

or a moment method (i.e. CIET), but is not

necessarily limited to these methods. Here,

[A] is a M x M matrix which depends on the

independent variables and represents the

structure to be optimized, {b} is the

excitation and {x} is the response. For

example, the vector {x} contains the

mailto:harscher@ifh.ee.ethz.ch


expansion coefficients in the MoM or the

nodal values in FEM.

It will be shown, that as long as the partial

derivatives of the matrix [A] and the

excitation {b} are known analytically, all

sensitivities can be determined analytically.

Up to now this approach has been

successfully tested with the MoM in the

optimization of waveguide filters and was

subsequently applied to the FEM. It can be

extended to other methods for which the

scattering problem can be formulated as

above.

Gradient based optimization of microwave

filters with the FEM using analytically

calculated gradients of cost functions is a new

technique which offers the following

advantages:

1. The gradient of a cost function can be

calculated analytically instead of using

finite differences.

2. The generality of the FEM is maintained

but the calculation time is reduced

significantly.

3. Analytically calculated gradients (change

of scattering parameters due to geometrical

changes) are exact and singularities do not

occur.

4. Combination of points 1 to 3 give a

powerful and fast optimization tool for

microwave filters and other structures.

In this paper the optimization of H–plane

filters using 2D–FEM with analytically

calculated gradients is reported. In

comparison to the standard approach in which

finite differences are needed to calculate the

gradient of a cost function this new idea

accelerates the FEM optimization by orders

of magnitude. Furthermore, significant

reduction of memory space is achieved and

the accuracy is improved since analytically

calculated gradients are exact and no

singularities occur like in the finite difference

approach. The method presented here can be

extended to other structures and is not

restricted to the 2D-FEM.

More advantages of this approach:

1. No network representation needed

2. Only one cost function evaluation instead

of two

3. Higher accuracy compared to a finite

difference scheme in particular in the

vicinity of resonances

4. No remeshing of the structure required

during gradient calculations

5. No matrix inversion necessary

6. Reduced memory requirements

7. Faster algorithms.

II. THEORY

Assume that the scattering parameter S11 �b g
of a structure, which depends on the

geometric parameters ai , i = 1, ... N, is

required to minimize a cost function of the

form:
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Here Wn are constants and � n  are specified

frequencies in the desired band. The question

we are trying to answer is: find the optimal

set of parameters which minimize the

function F aib g.
A major step in reaching the solution is the
computation of the gradient of the function

F aib g with respect to the parameters ai .

Taking the partial derivative of the function

against a generic parameter ai , we get
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In order not to cloud the main idea in

cumbersome mathematical formulas, we

simply assume that the scattering problem

before us is put in the following matrix form

[A]{x}={b}



Here, the matrix [A] represents the system,

{b} is the excitation and {x} is the solution.

The forms of these quantities depend on the

method used and naturally the structure.

Appropriate forms which result from the

FEM will be given.

We assume that the scattering parameters are

known in terms of the solution {x}.

Consequently, the gradient of the scattering

parameters with respect to the optimization

variables are determined from the partial

derivatives of the solution {x} with respect to

the same optimization variables. This point

can be easily seen using the chain rule. It is,

therefore, sufficient to determine the

following gradient ∇ {x}.

The gradient is with respect to the

optimization variables. To compute this

gradient, we take the partial derivative of the

equation  [A]{x} = {b} with respect to a

generic independent variable u to get
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A x b
x A

u u u
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which we rewrite as

[ ] [ ]{ } { }
{ }

Ax b
A x

u u u

∂∂ ∂= −
∂ ∂ ∂

From this equation, it is possible to determine

the components of the gradient of the solution

{x} by simply solving this linear set of

equations instead of inverting the matrix [A].

Recall the solution {x} is already known.

Within the Finite Element Method (FEM), the

gradient of the matrix [A] can be calculated

analytically. This allows us to evaluate the

gradient of the solution {x} without finite

differences. If desired, it is still possible to

use finite differences to compute the gradient

of the matrix [A] and still compute the

gradient of the solution from a single analysis

of the structure thereby avoiding a potentially

costly remeshing.

III. RESULTS

The method described here is applied to the

optimization of H-plane filters within the

Finite Element Method. The structure is

shown in Figure 1. All metallic surfaces are

assumed lossless.

We assume that only the TE10 mode is

incident on the filter from the left side.
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Fig1: H-Plane Stub Filter

9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

S
11

, S
21

 (
dB

)

S11 optimized
S21 optimized
S11 start    

Fig. 2: Optimization results of the H-Plane

Iris Filter (Fig. 1)

Fig. 2 shows the results of the optimization of

the H-Plane Iris Filter (Fig. 1). The size of the

standard waveguide (WR75) is a x b= 19.05

mm x 9.525 mm. The distances between the

irises (thickness l2=1 mm) have been kept

fixed: l1= 21.6580 mm, l3=23.6964 mm,

l4=23.8727 mm. The starting values for the
variable heights have been chosen as: h1=6.8

mm, h2=10.2 mm, h3=11.3 mm. For the

gradient optimization process we have



utilized the Matlab routine "constr" and a

triangular mesh with about 5500 triangles,

3000 nodes and 50 frequency points. The

routine converged after 19 iterations and

delivered the optimal heights: h1=7.17485

mm, h2=10.4285 mm, h3=11.0367 mm. The

results for S11 for both start and optimized

parameters are shown in Fig. 2. S21 for the

optimized values is also displayed. The

optimized return loss in the pass band is

better than 15 dB.
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Fig. 3: Derivatives of S11 of the H-Plane Iris

Filter (Fig. 1)

In Fig. 3 the derivatives of S11 with respect to

the iris heights are shown. It can be seen that

the investigated filter is very sensitive to

structural changes and large values for the

derivatives can occur. It is obvious that

evaluating the gradients with finite

differences can give errors especially near the

sharp peaks.

IV. CONCLUSION

We have developed a method for analytically

calculating the gradients of a cost function in

conjunction with a general field solver. The

method only requires that the problem can be

formulated in terms of a general

inhomogeneous matrix equation such as

generated by the Finite Element Method

(FEM). All partial derivatives are determined

from a single analysis of the structure, no

matrix inversion is required, no remeshing of

the FEM grid is needed. Results of the

optimization show the validity of the whole

process.
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