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Abstract: An integral equation technique for applications in narrowband resonant waveguide structures is pre-
sented. Owing to the incorporation of edge conditions at all discontinuities, the system matrix is kept small.
Moreover, its block-diagonal structure lends itself to fast processing techniques. Single- and dual-mode applica-
tions in circular and rectangular waveguides demonstrate the advantage of the method. 

INTRODUCTION
Over the past decade, computational techniques for the analysis of electromagnetic field problems have experi-
enced a significant degree of sophistication [1]. Resonant structures with their characteristically sharp peaks in
the frequency response, however, still pose problems for numerical techniques due to a substantial demand for
computing resourses [2]. In general, field solvers for resonant systems require extremely fine discretization, e.g.
[3], while in series expansion techniques, only a very large number of expansion terms can achieve a reasonable
convergence behaviour of the circuit response [4]. 
Therefore, this paper focuses on a fast, yet accurate integral equation technique for the analysis of narrowband
resonant waveguide structures. The salient features of this method can be summarized as follows: Edge condi-
tions are readily incorporated in the basis functions at rectangular and/or circular discontinuities. The edge condi-
tions are simultaneously taken into account in order to accurately capture the interactions between closely spaced
field singularities and the different polarizations in multimode resonators. Expansion terms enter the system
matrix only as sums in the system matrix’s elements, thus allowing every element to be tested individually for
convergence. The size of the system matrix depends exclusively on the low number of edge-conditioned basis
functions. Interactions between discontinuities are formulated such that the system matrix becomes highly sparse.
Therefore, the matrix scheme is easily adaptable to sparse-matrix LU decompositions. In order to determine the
scattering behaviour of the resonant structures, the evaluation of coefficients is limited to very specific locations.
However, coefficients within the analyzed structure can easily be extracted, if required, for the computation of the
entire electromagnetic field. Scattering parameters in the vicinity of the respective ports of the resonant structure
usually require the system to be solved with only a single excitation vector.

THEORY
In this section, we will highlight the choice of basis functions in the two different coordinate systems. For a
detailled description of the procedure leading to the block-diagonal matrix structure, the reader is referred to [4],
[5]. At each discontinuity formed by a junction of two waveguides, the electric field is expanded in a series of
basis functions which vanish everywhere except for the common aperture region. The basis functions involve the
modal functions of the common aperture, denoted by Th,e, and coefficients cr,s for TE and TM modes, respec-
tively.
In the cartesian coordinate system, edge conditions are applied at xl, xu, yl, yu. If one or more walls of two con-
nected guides are aligned, then the edge conditions of the respective mirror images are included. This leads to
coupling integrals which can be integrated analytically. The resulting expressions involve bessel functions of the



first kind and of order 1/6, which can be computed straightforwardly, e.g. [6]. Thus for rectangular structures, the
aperture functions are

In polar coordinates, the electric field in the aperture is expressed as

 

which requires coupling integrals to be evaluated numerically.

The procedure then continues by relating the basis function coefficient vectors ci at the ith discontinuity to those

of their immediate neighbours ci-1 and ci+1. The resulting coupled integral equations system is solved using
Galerkin’s method.

RESULTS AND DISCUSSION
Fig. 1 shows the structure and performance of a four-cavity cylindrical iris filter. Up to 100 expansion terms and
19 edge-conditioned basis functions are used in the calculation. The entire design process including synthesis,
fine-optimization and analysis is done in less than 20 minutes on an ordinary PC. In order to improve the stop-
band towards higher frequencies, the diameter of the cavities is chosen slightly larger than those of the input/out-
put guides. Excellent agreement with the mode-matching technique (MMT) is observed. 
A single cavity operating TE201 and TM210 modes is shown in Fig. 2. The input guide couples simultaneously to
both resonant modes which is utilized to create a transmission zero (attenuation pole) in the upper stopband at
13.45 GHz. However, due to the relatively large cavity, two spurious-mode resonances appear between 11.5 and
12 GHz. They can be eliminated by selecting smaller cavities supporting lower-order modes. This is shown in
Fig. 3 at the example of a two-cavity arrangement supporting both TE101 and TM110 modes. Input bypass cou-
pling is used to create two transmission zeros, one above and one below the passband of the filter. 
Whereas the structure in Fig. 1 is a special case which can be solved with TE1n modes and related basis functions,
the configurations in Figs. 2 and 3 require the entire mode spectrum. These designs are carried out with up to
1900 expansion terms (modes) and 23 edge-conditioned basis functions. Very good agreement with the MMT is
demonstrated. However, the results using our technique have been obtained with CPU-time savings of at least
one order of magnitude compared to those using the MMT. Up to 285 modes have been considered in the MMT,
and many more will be required in Fig. 3 to achieve convergence toward the equiripple return loss. 
In conclusion, the technique presented here is especially useful in narrowband systems as it allows the inclusion
of a large number of expansion terms within the framework of a relatively small number of edge-conditioned
basis functions and a block-diagonal system matrix. 
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Fig. 1  Scattering parameters of a circular-iris structure Fig. 2  Two-pole filter (based on TE201 and TM210
and comparison with the mode-matching method (MMT). modes) with input bypass coupling to create a trans-

mission zero in upper stopband.

Fig. 3  Basic layout and performance (including comparison with the mode-matching technique) of a four-pole
filter (based on TE101 and TM110 modes) with input bypass couplings to create transmission zeros to the right
and left of passband.
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