
 

  

Abstract--An integral equation approach for waveguide 
discontinuity analysis is presented. The algorithm arrives at a 
highly sparse system matrix which is kept small due to the 
simultaneous incorporation of all edge conditions. Examples of 
circular and rectangular waveguide components demonstrate 
the feasibility of the method. 
 

Index Terms--Integral equations, numerical methods, filters, 
transformers, waveguide components. 

I. INTRODUCTION 

lectromagnetic fields in waveguiding structures have been 
investigated for many years, and many different numerical 

techniques have been presented to visualize field propagation 
and/or extract performance-driven quantities such as scattering 
parameters. Components with arbitrary cross section or profile 
are usually analyzed by space-discretization techniques such 
as the frequency-domain finite-element method (FEM) or the 
finite-difference time-domain (FDTD) technique. Many of the 
so-called field solvers are now commercially available, e.g. [1], 
but they consume substantial computing resourses, especially 
when the structures under investigation exhibit frequency-
sensit ive responses.  

Components with standard cross sections - rectangular, 
circular, elliptic and variations thereof - are preferably analyzed 
by modal field-matching techniques of which the mode-
matching technique (MMT) is the most commonly used 
approaches, e.g. [2]. However, this method is plagued by a 
relatively slow convergence and the phenomenon of relative 
convergence [3] both of which have been linked to the 
inappropriate modelling of field singularities at metallic edges, 
e.g. [4], [5]. 

In this paper, we present an integral equation approach 
which, although using modal techniques for representing the 
electromagnetic field, incorporates the salient features of the 
method of moments (MoM) and permits the simultaneous 
incorporation of all field singularities through sets of edge-
conditioned basis functions. The method is readily applicable 
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to any cascaded waveguide discontinuity problem as will be 
demonstrated at examples in rectangular and circular 
waveguide technology covering X- to Ka-band frequency 
ranges.  Comparisons with the standard MMT verify the  
theoretical approach. 

II. THEORY 

Let us assume a structure consisting of a number of 
rectangular waveguide discontinuities as shown in Fig. 1. In 
each individual section of the component, the transverse 
electric and magnetic field components are expanded as 
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where  Th,e are cross-section functions, Yh,e are admittances, 
k zh,e are the phase constants for axial propagation, and F and B 
are the amplitudes of waves travelling in positive or negative 

axial direction ze
r

, e.g. [2]. 

Top View

Side View

 
Fig. 1.  Example of cascaded discontinuities in rectangular waveguide: A 
six-pole dual-mode filter. 
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At each discontinuity, the aperture field is expanded in a set 
of basis functions which includes the modal spectrum of the 
aperture and the appropriate terms to produce the required 
field singularities. At discontinuities, where waveguide walls 
are aligned, the respective mirror image of the non-aligned wall 
discontinuity is considered. In a cartesian cooordinate system, 
the aperture functions are 
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where  
0

[]hrT  and 
0

[]esT  are, respectively,  the TE- and TM-mode 

cross-section functions of the common aperture between two 
connected sections, cr and cs are the coefficients of the basis 
functions, and xl, xu, yl, yu denote the positions of field 
singularities in the respective direction. In a circular-cylindrical 
system, the aperture functions for on-axis connected sections 
(Fig. 2) are  
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where the common (smaller) aperture is of radius r0. 
 
 

 
Fig. 2.  On-axis discontinuities in circular waveguide: A waveguide 
transformer. 

 
We now relate the basis function coefficients ci at 

discontinuity i to those of their immediate neighbours, ci-1  and  
ci+1. This is accomplished by combining TE and TM modes 
( bsrkpq →→ ,;, ) and expressing the z-dependent 

function (1) in terms of basis function coefficients 
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Here, W I and W II are matrices of inner products of the 
eigenfunctions of the waveguide left (I) and right (II), 
respectively, of a discontinuity with the edge-conditioned 
basis functions (3), (4) of the apertures. In cartesian 
coordinates, integration can be solved analytically whereas, in 
the cylindrical system, numerical integration is employed. 
Rearranging (5), (6), we arrive at the following differences of 
wave amplitudes as required in (2) for a specific discontinuity 
at location z=0 
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where L denotes the length of a section. At the input (region 0) 
and output (region N) the above expressions change to 
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where M and L denote the mode of excitation at the input and 
output, respectively. 

In the last step, the magnetic field components (2) are 
matched at all discontinuities. Galerkin’s method within the 
method of moments is applied in a way that produces the 
transposed matrices, W t, whose entries have already been 
computed.  The final matrix equation, e.g., for six 
discontinuities is of the form 
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where U and V are the input and output excitation vectors 
given by 

( ) { }01,2 YDiagWjU
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 The matrix system (11) has a number of distinct properties 
which make the method efficient and fast:  
 The size of matrix [A] is N times the number of basis 
functions. Note that the number of basis functions per 
discontinuity can vary.  
 The modes enter the matrix elements through sums (matrix 
multiplications) which can individually be checked for 
convergence. This  procedure eliminates the phenomenon of 
relative convergence known from mode-matching techniques.  
 Matrix [A] is block-diagonal and symmetric. If the structure 
under investigation is symmetric in axial direction, then [A] is 
also symmetric with respect to its minor diagonal. Hence only a 
limited number of matrix entries need to be computed.  
 An LU decomposition (under consideration of the block 
structure and symmetries) needs to be performed only once per 
frequency point. 
 For all different excitation vectors U, V, only the first and last 
coefficient vectors need to be computed.  
 The number of modes required in the generalized scattering 
matrix representation of the component under investigation is 
usually much smaller than those considered at the individual 
discontinuities within the component. If the component is 
symmetric, only one excitation vector is required to obtain the 
fundamental-mode scattering parameters.  
 The modal spectrum used to analyze a given structure is 
controlled by the sequence of cutoff frequencies. Therefore, 
the system can easily be adapted to specific modal 
requirements such as the TEm0 mode set for standard H-plane 
components or the TE/TM1n mode set for standard E-plane 
systems. 
 In direct comparison with similar frequency-domain 
techniques, e.g. the mode-matching technique, CPU-time 
savings of at least one order of magnitude have been achieved. 
This makes the method ideally suited for fast and reliable 
design applications within optimization routines, e.g. [6].  

III.    RESULTS 

 Here we present examples of applications of the integral 
equation approach.  
 Fig.1 shows the basic layout of a six-pole dual mode filter 
which accommodates two electrical resonators in each of the 
three physical cavities. Cross coupling between the first and 
fourth and the third and sixth electrical resonators permits the 
creation of two transmission zeroes at finite frequencies. A 
typical response of such a filter, optimized for an X-band 
application, is depicted in Fig. 3. Up to 2000 modal terms are 
used in the field expansions, but the maximum number of basis 
functions at a certain discontinuity can be limited to 23.  
 The next example is a corrugated waveguide lowpass filter 
designed for K-band applications. The principle layout is 
shown at the top of Fig. 4. A two-section transformer is used 
to connect the standard K-band waveguide to the corrugated 
structure consisting of nine stubs. The analysis incorporates 
the field symmetries resulting in a TE/TM (2m -1, 2n) mode set for 
the entire component. Fig. 4 also demonstrates excellent 
agreement with results obtained from the mode-matching 
technique. Note that this agreement extends over an amplitude 

rang of 300 dB corresponding to 15 orders of magnitude. 
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Fig. 3. Scattering parameter of optimized X-band dual-mode filter of  

Fig. 1. 
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Fig. 4. Layout and performance of  K-band corrugated waveguide lowpass 
filter and comparison with results obtained with the mode-matching 
technique (MMT). 

 
The following two examples relate to on-axis circular 
waveguide components.  
 The performance of a transition from a 7.05mm-diameter to 
8.9mm-diameter circular waveguide according to Fig. 2 is 
depicted in Fig. 5. Initial transformer designs, which apply 



 

rectangular waveguide E-plane design concepts [2] to circular 
waveguides, result in a return loss of 30 dB between 28 GHz 
and 40 GHz. After optimization, using the integral equation 
technique as a fast and reliable analysis tool and applying 
TE11-mode field symmetry, the return loss is improved to 
beyond 40 dB over the same frequency range. For comparison 
and as a validation of the edge-conditioned basis function 
approach in circular-cylindrical coordinates, results obtained 
with the MMT are shown as dashed lines.  Again, excellent 
agreement is observed. 
 

25 30 35 40f/G H z
0

20

40

60

80

1/
|S

11
|  

[d
B

]

This method

MMT

 
Fig. 5. Scattering parameter |S11| of a Ka-band circular waveguide 
transition according to Fig. 2 and comparison with results obtained with 
the mode-matching technique (MMT). 
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Fig. 6. Principal layout and performance of a four -resonator Ka-band 
circular waveguide filter and comparison with results obtained with the 
mode-matching technique (MMT). 

 
A six-resonator circular waveguide iris filter for TE11-mode 
operation is our last example. The layout is shown at the top of 
Fig. 6. All irises are 1 mm thick; the input/output waveguide 
diameters are 7.04 mm, and the diameter of the resonators is 
increased to 9 mm for a better stopband performance. The 35 
dB return-loss bandwidth is 1.5 GHz centered at 28.75 GHz. A 

maximum of 199 modes and 19 basis functions is used in the 
final analysis. The computations using the integral equation 
approach show, again, excellent agreement with results 
obtained by the mode-matching technique (dashed line in Fig. 
6). 

IV. CONCLUSIONS 

 The integral equations approach presented in this paper 
presents a fast, powerful and effective alternative for the 
scattering analysis of cascaded waveguide discontinuities. Its 
most attractive features are the highly sparse system matrix, 
the simultaneous consideration of all edge conditions and the 
elimination of the relative convergence phenomenon known 
from mode-matching techniques. Example designs show good 
agreement with mode-matching results. However, the integral 
equation approach is at least one order of magnitude faster 
than the MMT. 
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