
1. Introduction

Circular waveguide components are primarily used
in front ends of microwave communication systems,
e.g. [1], and in high-power microwave applications,
e.g. [2]. Although initial design guidelines for such
components are available, they usually fail to accu-
rately meet modern system specifications. This is
mostly due to the interactions of fields generated at
individual parts of a component. Consequently, all
modern waveguide designs are subject to fine-tun-
ing through computer optimization. However, given
the very high number of spectral terms, both propa-
gating and evanescent, which are usually required
for an accurate performance prediction, the design
by optimization is time-consuming and cumber-
some. In order to reduce time frames for component
design, the individual analysis step within the opti-
mization process must be significantly accelerated.
Therefore, in this paper, a coupled integral equation
technique is presented which lends itself to a fast,
accurate and reliable analysis and design process for
components in circular waveguide technology. The
method is highly flexible and allows the computa-
tion of stepped as well as continuously profiled
components. In the event of stepped transitions, edge
conditions for the accurate representations of field
singularities are readily incorporated. Components
with continuous wall profile can be approximated by
several hundred individual sections. Although this
number appears high, the method still produces
accurate computations within reasonable CPU times.
This is mainly due to a formulation using coupled

integral equations which, when solved by Galerkin’s
method within the method of moments, produces a
highly sparse, block-diagonal matrix system [3]. A
customized LU decomposition guarantees a speedy
solution of the parameters in question. 
A further advantage of this approach lies in the flexi-
bility of selecting specific input and output field
configurations of interest. Although the number of
spectral terms are high within the structure, only the
coefficients of basis functions at the input/output
ports need to be computed. From those coefficients,
the mode parameters with respect to a defined set are
easily extracted.

2. Theory

The general formulation of the coupled integral equa-
tion technique (CIET) for a cartesian coordinate sys-
tem is presented in [3] and will not be repeated here.
Instead, we are focusing on the differences resulting
from applications in circular waveguide structures
[4]. 
Let the respective TE- and TM-mode spectra of two
on-axis connected circular waveguides, denoted I and
II, be given by
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to the zeroes of the derivative; and A and D are
known normalization coefficients. Let  be the unit
vector in axial direction and let region 0 denote the
smaller cross section of regions I and II. Then the
basis functions are chosen such that 

(2)

in case of a smooth (small-step) transition and 

(3)

for an abrupt transition incorporating the edge condi-
tion. Cr and Cs are the basis function coefficients.
Note that the number of basis functions, r+s, is much
smaller than the number of field expansion terms
(modes), i+k in (1). The required number of modes
can be tested by tracking the convergence in the inner
products of expansion terms and basis functions. This
leaves the number of basis functions as the only vari-
able in the system. That number is small for abrupt
discontinuities (3) since the edge condition acceler-
ates the convergence of inner product. However, the
related integrals have to be evaluated numerically.
Smooth transitions usually require a higher number
of basis functions, but the inner products can be
solved analytically.
In order to analyze components with many disconti-
nuities, the field at each discontinuity is expressed in
terms of basis functions and related to the respective
expressions at the immediate neighbour discontinui-
ties. The resulting integral equation system is solved
using Galerkin’s technique in a method-of-moments
algorithm. Since basis function coefficients are con-
nected only to those of their immediate neighbours, a
blockdiagonal matrix is obtained. This matrix is
quickly solved by a taylored LU decomposition
which respects the blockdiagonal structure. Backsub-
stitution yields the coefficient vectors at the first and
last discontinuity from which the entries of the gener-
alized scattering matrix can be obtained.
Once the analysis module is completed and an initial
set of design parameters obtained, a component is
fine-tuned by employing a MiniMax strategy of opti-
mization [5]. 

3. Results

In this section, we show a few application-oriented
examples and verify the theoretical approach by
comparison with another method, the Mode-Match-
ing Technique (MMT). In all of these cases and for
the majority of other components studied, the CPU
times using the CIET described above were found to
be at least one order of magnitude less than those
involving other numerical techniques. Specific com-

ponents might be calculated two orders of
magnitudes faster.
Fig. 1 shows the performance of a four-section circu-
lar waveguide transformer [1]. The return loss is bet-
ter than 40 dB between 16 GHz and 25 GHz, the
common TE11-mode bandwidth of the two interfac-
ing waveguides. Excellent agreement is obtained
with results from the MMT.

Fig. 1 Performance of a four-section TE11-mode trans-
former and comparison with the MMT.

A circular iris filter has an inherently weak attenua-
tion performance in the stopband region between the
fundamental and second passband, as is demon-
strated in Fig. 2 between 21 GHz and 25 GHz. By
replacing the first iris with a radial stub, which now
acts as a frequency-dependent inverter, two transmis-
sion zeroes are introduced (Fig. 3). Compared to Fig.
2, the upper transmission zero is used to increase the
attenuation of the filter between 21 GHz and 23 GHz.
For details on the design procedure of such filters, the
reader is referred to [6].

Fig. 2 Performance of a standard four-resonator TE11-
mode iris filter and comparison with the MMT.

The next example is related to periodic structures. In
[7], we proposed an approximation to determine the
number of unit cells required to achieve a certain
attenuation: 
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where Lobj is the desired insertion loss in dB , α is the
attenuation of the (infinite) periodic structure, and p
is the period of the unit cell. Let us assume that 100
dB attenuation at 7.34 GHz is to be achieved and that
the dimensions of the unit cell are: waveguide diame-
ter/length = 26mm/4.55mm, iris diameter/thickness =
14.3mm/0.13mm. Applying the analysis of [7], we
find αp=0.95 for the periodic structure. Thus 12 unit
cells should satisfy the attenuation specifications.
This is demonstrated in Fig. 4 for a varying number
of unit cells. Note that the curve for N=12 produces
an attenuation just below the required 100 dB (black
bar in Fig. 4), thus validating our approach presented
in [7]. 

Fig. 3 Performance of a four-resonator TE11-mode filter
with a single frequency-dependent inverter and compari-
son with the MMT.

Fig. 4 Transmission characteristics of a ‘periodic’ wave-
guide structure with N unit cells.

The final two examples are designs of mode convert-
ers. Fig. 5 shows the performance of a TE11-to-TM11
converter which was redesigned after three different
numerical techniques failed [8] to confirm efficien-
cies stated in [9]. This new design, which is con-
firmed by results obtained with the MMT,
significantly improves bandwidth and efficiency.
Note that the dimensions are such that the input (left)
is restricted to fundamental TE11-mode propagation,

while the output (right) supports both TE11 and TM11
modes. With the input reflection coefficient and the
transmission coefficient of the fundamental mode
below -25 dB, the theoretical efficiency of TE11-to-
TM11 conversion is better than 99 percent over a
wide frequency range. 
The performance of a continuous-profile TE02-to-
TE01 mode converter according to [2] is shown in
Fig. 6. In this case, the edge condition within the
CIET was disengaged, and the continuous profile
was approximated by 200 steps. It is one of the out-
standing features of the CIET that such a large num-
ber of steps can be handled within a reasonable CPU
time. An optimization attempt, although possible
even with up to 300 steps, has not produced a better
design without substantially altering the shape of the
profile, thus verifying the excellent original design
by Buckley and Vernon [2]. The actual profile is
shown in the inset of Fig. 6 and incorporates a correc-
tion [10] of the profile specified in [2].

Fig. 5 Performance of an optimized TE11-to-TM11mode
converter and comparison with MMT.

Fig. 6 Performance of continuous-profile TE02-to-TE01
mode converter according to [2, 10].

4. Conclusions

It is demonstrated that the coupled integral equation

15 17 19 21 23 25
f/GHz

-140

-120

-100

-80

-60

-40

-20

0

dB CIET

MMT

15 17 19 21 23 25
f/GHz

-140

-120

-100

-80

-60

-40

-20

0

dB CIET

MMT

7 8 9 10 11 12 13
f/GHz

-120

-100

-80

-60

-40

-20

0

dB

N=4

N=6

N=8

N=10

N=12

7 8 9 10 11 12 13
f/GHz

-120

-100

-80

-60

-40

-20

0

dB

N=4

N=6

N=8

N=10

N=12

9.5 9.7 9.9 10.1 10.3 10.5
f/GHz

-40

-30

-20

-10

0

dB

CIET

MMT

S21(TE11-TE11)S11(TE11-TE11)

S21(TE11-TM11)

9.5 9.7 9.9 10.1 10.3 10.5
f/GHz

-40

-30

-20

-10

0

dB

CIET

MMT

S21(TE11-TE11)S11(TE11-TE11)

S21(TE11-TM11)

57 58 59 60 61 62 63
f/GHz

-100

-80

-60

-40

-20

0

dB

S11(TE02-TE02)

S21(TE02-TE01)

0 30 60 90 120 150 180
z/mm

-50

-25

0

25

50

r/
m

m

57 58 59 60 61 62 63
f/GHz

-100

-80

-60

-40

-20

0

dB

S11(TE02-TE02)

S21(TE02-TE01)

0 30 60 90 120 150 180
z/mm

-50

-25

0

25

50

r/
m

m



technique offers an attractive solution as an analysis
module in software packages for circular waveguide
components. Compared with other techniques, CIET
is usually one order of magnitude faster and produces
accurate results. Several examples involving
waveguide transitions, standard and advanced band-
pass filters, stepped- and continuous-profile mode
converters as well as periodic structures demonstrate
the versatility of this method. Verification is
achieved by comparison with results obtained by the
mode-matching technique. 
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