FREQUENCY-DOMAIN ANALYSIS OF COUPLED LINES IN THE PRESENCE OF EXTERNAL RF FIELDS

K. Rambabu and J. Bornemann
Department of Electrical and Computer Engineering, University of Victoria
Victoria, BC, V8W 3P6, Canada

Abstract

A frequency-domain analysis of coupled lines in the presence of external RF fields is introduced. Assuming a proximity-coupled lines arrangement on a printed circuit board and quasi-TEM propagation along the lines, we present the derivation of the overall impedance matrix of the coupler. The external electromagnetic field is readily incorporated in the line voltages and currents, and a characteristic equation is obtained. The superposition of C and Π modes is used to derive the impedance matrix.

INTRODUCTION

Electromagnetic interference of external fields on printed circuit boards is a well-known problem in microwave/RF technology, e.g. [1]. As the demand for high-density packaging increases, so does the necessity of measuring and evaluating the influence of external fields, e.g. [2]. Modelling techniques for such phenomena have evolved only recently and are mainly based on time-domain approaches and transient analyses, e.g. [2], [3]. A frequency-domain technique is presented in [4], but the formulation is based on incorporating distributed sources in the general transmission-line model.
In this paper, we present a frequency-domain analysis, which accounts for the entire external electromagnetic field. The theory is presented for the example of coupled lines on printed circuit boards, where we assume quasi-TEM propagation.

FORMULATION

Fig. 1 shows the general configuration of proximity-coupled lines. The external fields E and H can be regarded as interference from the near-by circuit. They may be caused by radiation from other circuitry and can be calculated from the respective currents (via potential functions) flowing on these circuits.
The behavior of two coupled lines in the presence of external electromagnetic fields can be described by the following set of equations:

Fig. 1 Coupled lines under the influence of external fields.
where z_{j} and $\mathrm{y}_{j}(\mathrm{j}=1,2)$ are self-impedance and admittance per unit length of line, and z_{m} and y_{m} are mutual impedance and admittance per unit length.
Eliminating I_{1} and I_{2} from (1) to (4) gives the following set of coupled equations for voltages V_{1} and V_{2}

$$
\begin{equation*}
\frac{d^{2} V_{1}}{d x^{2}}-a_{1} V_{1}-b_{1} V_{2}-\left(\left(z_{m} y_{2}+y_{1} z_{1}\right) \int_{0}^{d} \vec{E} \cdot d \vec{y}+z_{1} \int_{p_{1}} \frac{d \vec{H} \cdot d \vec{l}}{d x}\right)=0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} V_{2}}{d x^{2}}-a_{2} V_{2}-b_{2} V_{1}-\left(\left(z_{m} y_{1}+y_{2} z_{2}\right) \int_{0}^{d} \vec{E} \cdot d \vec{y}+z_{2} \int_{p_{2}} \frac{d \vec{H} \cdot d \vec{l}}{d x}\right)=0 \tag{6}
\end{equation*}
$$

where $a_{1}=y_{1} z_{1}+z_{m} y_{m}, b_{1}=z_{1} y_{m}+z_{m} y_{2}, a_{2}=y_{2} z_{2}+z_{m} y_{m}, b_{2}=y_{1} z_{m}+z_{2} y_{m}$.
Using (5) and (6), we can write

$$
\begin{equation*}
\frac{d^{4} V_{2}}{d x^{4}}-\left(a_{2}+a_{1}\right) \frac{d^{2} V_{2}}{d x^{2}}+\left(a_{1} a_{2}-b_{1} b_{2}\right) V_{2}+\left(a_{1} c_{2}-b_{2} c_{1}\right)=0 \tag{7}
\end{equation*}
$$

where $\quad c_{1}=\left(\left(z_{m} y_{2}+y_{1} z_{1}\right) \int_{0}^{d} \vec{E} \cdot d \vec{y}+z_{1} \int_{p_{1}} \frac{d \vec{H} \cdot d \vec{l}}{d x}\right) \quad$ and $\quad c_{2}=\left(\left(z_{m} y_{1}+y_{2} z_{2}\right) \int_{0}^{d} \vec{E} \cdot d \vec{y}+z_{2} \int_{p_{2}} \frac{d \vec{H} \cdot d \vec{l}}{d x}\right)$.
By assuming a variation of type $e^{-\gamma x+j \omega t}$ for V_{1}, V_{2}, \vec{E} and \vec{H}, we can write the characteristic equation as

$$
\begin{equation*}
\gamma^{4}-\left(a_{1}+a_{2}\right) \gamma^{2}+a_{1}\left(a_{2}+c_{2}\right)-b_{2}\left(b_{1}+c_{1}\right)=0 \tag{8}
\end{equation*}
$$

The solutions of equation (8)

$$
\begin{equation*}
\gamma_{c, \pi}^{2}=\frac{a_{1}+a_{2}}{2} \pm \frac{1}{2} \sqrt{\left(a_{1}+a_{2}\right)^{2}-4\left(a_{1}\left(a_{2}+c_{2}\right)-b_{2}\left(b_{1}+c_{1}\right)\right)} \tag{9}
\end{equation*}
$$

represent the forward and backward traveling waves of C and Π modes on asymmetrical coupled lines with propagation constants γ_{c} and γ_{π}, respectively, under the influence of external fields. For symmetrical lines and symmetric external fields, these modes become even and odd modes.
For both modes, the relationship between the line voltages may be determined from (5) and (6)

$$
\begin{equation*}
\frac{d^{2} V_{1}}{d x^{2}}-a_{1} V_{1}-b_{1} V_{2}-c_{1}=0 \quad \frac{d^{2} V_{2}}{d x^{2}}-a_{2} V_{2}-b_{2} V_{1}-c_{2}=0 \tag{10}
\end{equation*}
$$

so that the voltage ratios can be written in terms of the propagation constants (9)

$$
\begin{equation*}
\frac{V_{2 c, \pi}}{V_{1 c, \pi}}=\frac{c_{2}\left(\gamma_{c, \pi}^{2}-a_{1}\right)+b_{2} c_{1}}{c_{1}\left(\gamma_{c, \pi}^{2}-a_{2}\right)+b_{1} c_{2}}=R_{c, \pi} \tag{11}
\end{equation*}
$$

The general solutions for the voltages on the two lines in terms of all four waves are given by

$$
\begin{align*}
& V_{1}=A_{1} e^{-\gamma_{c} x}+A_{2} e^{\gamma_{c} x}+A_{3} e^{-\gamma_{\pi} x}+A_{4} e^{\gamma_{\pi} x} \tag{12}\\
& V_{2}=R_{c} A_{1} e^{-\gamma_{c} x}+R_{c} A_{2} e^{\gamma_{c} x}+R_{\pi} A_{3} e^{-\gamma_{\pi} x}+R_{\pi} A_{4} e^{\gamma_{\pi} x} \tag{13}
\end{align*}
$$

Substitution of (12), (13) into (1), (2) and solving for port currents I_{1}, I_{2} yields

$$
\begin{align*}
& I_{c 2}=\frac{\gamma_{c}\left(z_{m}-R_{c} z_{1}\right)}{R_{c}\left(z_{m}^{2}-z_{1} z_{2}\right)} R_{c} A_{1} e^{-\gamma_{c} x}-\frac{\gamma_{c}\left(z_{m}-R_{c} z_{1}\right)}{R_{c}\left(z_{m}^{2}-z_{1} z_{2}\right)} R_{c} A_{2} e^{\gamma_{c} x}+\frac{z_{1} z_{m} \int \vec{H} \cdot d \vec{l}-z_{2} z_{1} \int \vec{H} \cdot d \vec{l}}{z_{m}^{2}-z_{1} z_{2}} \tag{14}\\
& I_{c 1}=\frac{\gamma_{c}\left(z_{2}-R_{c} z_{m}\right)}{\left(z_{1} z_{2}-z_{m}^{2}\right)} A_{1} e^{-\gamma_{c} x}-\frac{\gamma_{c}\left(z_{2}-R_{c} z_{m}\right)}{\left(z_{1} z_{2}-z_{m}^{2}\right)} A_{2} e^{\gamma_{c} x}+\frac{z_{1} z_{2} \int \vec{H} \cdot d \vec{l}-z_{2} z_{m} \int \vec{H} \cdot d \vec{l}}{z_{p_{1} z_{2}-z_{m}^{2}}^{p_{2}}} \tag{15}\\
& I_{\pi 2}=\frac{\gamma_{\pi}\left(z_{m}-R_{\pi} z_{1}\right)}{R_{\pi}\left(z_{m}^{2}-z_{1} z_{2}\right)} R_{\pi} A_{3} e^{-\gamma_{\pi} x}-\frac{\gamma_{\pi}\left(z_{m}-R_{\pi} z_{1}\right)}{R_{\pi}\left(z_{m}^{2}-z_{1} z_{2}\right)} R_{\pi} A_{4} e^{\gamma_{\pi} x}+\frac{z_{1} z_{m} \int \vec{H} \cdot d \vec{l}-z_{2} z_{1} \int \vec{H} \cdot d \vec{l}}{z_{m}^{2}-z_{1} z_{2}} \tag{16}\\
& I_{\pi 1}=\frac{\gamma_{\pi}\left(z_{2}-R_{\pi} z_{m}\right)}{\left(z_{1} z_{2}-z_{m}^{2}\right)} A_{3} e^{-\gamma_{\pi} x}-\frac{\gamma_{\pi}\left(z_{2}-R_{\pi} z_{m}\right)}{\left(z_{1} z_{2}-z_{m}^{2}\right)} A_{4} e^{\gamma_{\pi} x}+\frac{z_{1} z_{2} \int \vec{H} \cdot d \vec{l}-z_{2} z_{m} \int \vec{H} \cdot d \vec{l}}{z_{1} z_{2}-z_{m}^{2}} \tag{17}
\end{align*}
$$

Equations (14)- (17) can be rearranged as follows

$$
\begin{array}{ll}
i_{c 1}=I_{c 1}-I_{s 1}=Y_{c 1} A_{1} e^{-\gamma_{c} x}-Y_{c 1} A_{2} e^{\gamma_{c} x} & i_{c 2}=I_{c 2}-I_{s 2}=Y_{c 2} R_{c} A_{1} e^{-\gamma_{c} x}-Y_{c 2} R_{c} A_{2} e^{\gamma_{c} x} \\
i_{\pi 1}=I_{\pi 1}-I_{s 1}=Y_{\pi 1} A_{3} e^{-\gamma_{\pi} x}-Y_{\pi 1} A_{4} e^{\gamma_{\pi} x} & i_{\pi 2}=I_{\pi 2}-I_{s 2}=Y_{\pi 2} R_{\pi} A_{3} e^{-\gamma_{\pi} x}-Y_{\pi 2} R_{\pi} A_{4} e^{\gamma_{\pi} x}
\end{array}
$$

where

$$
Y_{c 1}=\frac{\gamma_{c}\left(z_{2}-R_{c} z_{m}\right)}{z_{1} z_{2}-z_{m}^{2}}, \quad Y_{c 2}=\frac{\gamma_{c}\left(z_{m}-R_{c} z_{1}\right)}{R_{c}\left(z_{m}^{2}-z_{1} z_{2}\right)}, \quad Y_{\pi 1}=\frac{\gamma_{\pi}\left(z_{2}-R_{\pi} z_{m}\right)}{z_{1} z_{2}-z_{m}^{2}}, \quad Y_{\pi 2}=\frac{\gamma_{\pi}\left(z_{m}-R_{\pi} z_{1}\right)}{R_{\pi}\left(z_{m}^{2}-z_{1} z_{2}\right)}
$$

and

$$
I_{s 1}=\frac{z_{1} z_{2} \int_{p_{1}} \vec{H} \cdot d \vec{l}-z_{2} z_{m} \int_{p_{2}} \vec{H} \cdot d \vec{l}}{z_{1} z_{2}-z_{m}^{2}}, \quad I_{s 2}=\frac{z_{1} z_{m} \int_{p_{1}} \vec{H} \cdot d \vec{l}-z_{2} z_{1} \int_{p_{2}} \vec{H} \cdot d \vec{l}}{z_{m}^{2}-z_{1} z_{2}}
$$

Finally, the impedance matrix of the four-port is found by solving for port voltages in terms of port currents. Since the port voltages and currents are given by

$$
\begin{align*}
& {\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
R_{c} & R_{c} & R_{\pi} & R_{\pi} \\
R_{c} e^{-\gamma_{c} L} & R_{c} e^{\gamma_{c} L} & R_{\pi} e^{-\gamma_{\pi} L} & R_{\pi} e^{\gamma_{\pi} L} \\
e^{-\gamma_{c} L} & e^{\gamma_{c} L} & e^{-\gamma_{\pi} L} & e^{\gamma_{\pi} L}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right]} \tag{20}\\
& {\left[\begin{array}{c}
i_{1} \\
i_{2} \\
-i_{3} \\
-i_{4}
\end{array}\right]=\left[\begin{array}{cccc}
Y_{c 1} & -Y_{c 1} & Y_{\pi 1} & -Y_{\pi 1} \\
R_{c} Y_{c 2} & -R_{c} Y_{c 2} & R_{\pi} Y_{\pi 2} & -R_{\pi} Y_{\pi 2} \\
R_{c} Y_{c 2} e^{-\gamma_{c} L} & -R_{c} Y_{c 2} e^{\gamma_{c} L} & R_{\pi} Y_{\pi 2} e^{-\gamma_{\pi} L} & -R_{\pi} Y_{\pi 2} e^{\gamma_{\pi} L} \\
Y_{c 1} e^{-\gamma_{c} L} & -Y_{c 1} e^{\gamma_{c} L} & Y_{\pi 1} e^{-\gamma_{\pi} L} & -Y_{\pi 1} e^{\gamma_{\pi} L}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right]} \tag{21}
\end{align*}
$$

the impedance matrix follows as

$$
[Z]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{22}\\
R_{c} & R_{c} & R_{\pi} & R_{\pi} \\
R_{c} e^{-\gamma_{c} L} & R_{c} e^{\gamma_{c} L} & R_{\pi} e^{-\gamma_{\pi} L} & R_{\pi} e^{\gamma_{\pi} L} \\
e^{-\gamma_{c} L} & e^{\gamma_{c} L} & e^{-\gamma_{\pi} L} & e^{\gamma_{\pi} L}
\end{array}\right]\left[\begin{array}{cccc}
Y_{c 1} & -Y_{c 1} & Y_{\pi 1} & -Y_{\pi 1} \\
R_{c} Y_{c 2} & -R_{c} Y_{c 2} & R_{\pi} Y_{\pi 2} & -R_{\pi} Y_{\pi 2} \\
-R_{c} Y_{c 2} e^{-\gamma_{c} L} & R_{c} Y_{c 2} e^{\gamma_{c} L} & -R_{\pi} Y_{\pi 2} e^{-\gamma_{\pi} L} & R_{\pi} Y_{\pi 2} e^{\gamma_{\pi} L} \\
-Y_{c 1} e^{-\gamma_{c} L} & Y_{c 1} e^{\gamma_{c} L} & -Y_{\pi 1} e^{-\gamma_{\pi} L} & Y_{\pi 1} e^{\gamma_{\pi} L}
\end{array}\right]^{-1}
$$

Assuming that the impedances of the connected lines are known, the four-port scattering parameters of the coupler are obtained straightforwardly.

CONCLUSION AND DISCUSSION

We present a frequency-domain analysis of asymmetrical coupled lines in the presence of external electromagnetic fields. Based on transmission-line theory and quasi-TEM propagation, a characteristic equation is obtained which provides solutions for C and Π modes and accounts for the influence of the external field. Superposition of the solutions is used to obtain the overall impedance matrix of the coupler, which can be readily converted to scattering parameters.
The presentation will focus on the fundamental steps in the theory and explain the extension of conventional C - and Π-mode analysis to include external fields. Moreover, some examples will be shown which demonstrate the influence of electromagnetic-field illumination on the coupler performance.

REFERENCES

[1] L.B. Gravelle and P.F. Wilson, "EMI/EMC in printed circuit boards - A literature review", IEEE Trans. on EMC, Vol. 34, no. 2, pp. 109-116, May 1992.
[2] Y. Matsumoto, M. Takeuchi, K. Fujii, A. Sugiura and Y. Yamanaka, "A time-domain microwave oven model for the 2.4-GHz band", IEEE Trans. on EMC, Vol. 45, no. 3, pp. 561-566, Aug. 2003.
[3] Y. Kami and M. Kimura, "Coupling of a transient near field to a transmission line", IEICE Trans. Comтип., Vol. E79-B, no. 4, pp. 487-502, Apr. 1996.
[4] H. Haase and J. Nitsch, "Generalized transmission-line theory for the treatment of nonuniform multiconductor transmission lines", in Proc. ISTET'01 XI. Int. Symp. Theoretical Elec. Engr., 4p., Linz, Austria, Aug. 2001.

