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ABSTRACT — This paper presents guidelines for the design of 

dual-band transformers in both rectangular and ridge waveguide 
technologies. Four to eight transformer sections are used to 
satisfy specifications for advanced satellite and terrestrial 
communications in C-band and Ku-band. Compact designs are 
obtained by synthesis of wideband components, which are then 
optimized for dual-band application. Measurements of a Ku-
band prototype verify the design approach. 

 
Index Terms — Impedance transformers, waveguide 

transitions, waveguide discontinuities, ridge waveguides, satellite 
communications. 

I. INTRODUCTION 

The theory and design of transmission-line and waveguide 
impedance transformers are well documented and understood 
[1], [2]. Many of the underlying principles found their way 
into computer-aided synthesis and design algorithms, e.g. [3], 
but only little work on transformers focused on the dual-band 
nature used, for example, in antenna feeds of modern 
communication systems such as satellite and terrestrial line-
of-sight applications. 

Only recently has this topic been theoretically addressed. 
Design guidelines for dual-band transmission-line 
transformers with respect to the lengths and impedance levels 
of individual transformer sections have been developed [4] – 
[8]. The main items of interest were the design of the upper 
band as a harmonic of the fundamental band and the reduction 
of component size by using shorter sections. However, all 
derivations presented in [4] – [8] dealt exclusively with two-
section transformers which by no means satisfy the 
demanding performance specifications of modern 
communication systems. Moreover, they are based on TEM-
like characteristics and fail to address dispersion effects in 
waveguide technology. 

Therefore, in this paper a number of dual-band waveguide 
transformer designs are presented, which use four to eight 
sections. They are relatively compact and display 
performances adequate for today’s design challenges. The 
initial investigation focuses on C-band as one of the classic 
dual-band satellite application. Dual-band rectangular 
waveguide transformers (Fig. 1a) are used for regular C-band 
coverage while ridge waveguide technology (Fig. 1b) is 
employed for extended frequency ranges. Finally, a compact 

prototype for advanced Ku-band satellite applications 
demonstrates high-performance properties. 

 
                       (a)                                             (b) 

Fig. 1 Three-section dual-band transformers in rectangular (a) and 
ridge (b) waveguide technology. 

II. DESIGN CONSIDERATIONS 

Dual-band transformer designs with a relatively wide 
separation between the bands are based on two different 
strategies.  

First, a regular quarter-wavelength transformer can be 
designed for the lower band, e.g. according to [3]. Operation 
in the upper band can then be achieved by utilizing its 
harmonic performance at three quarter-wavelengths. Such an 
example is shown in Fig. 2 (dashed line) for a dual-C-band 
transformer from a square to regular C-band cross section. 
The specifications require 38 dB return loss over the 
frequency bands 3.6 – 4.2 GHz and 5.8 – 6.5 GHz. The four-
section transformer, which is designed for a midband 
frequency of 3.9 GHz in the lower band, satisfies the 
specifications. Due to waveguide dispersion, however, the 
guided wavelength in the lower band is long (λg=1.9λ0) and, 
therefore, the length of the transformer between the two ports 
is 182 mm (c.f. Fig. 2). 

Secondly, a broadband transformer can be designed for the 
entire band from 3.6 to 6.5GHz (center frequency 5.1GHz, 
bandwidth 56%). Such a performance is shown as the solid 
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line in Fig. 2. Of course, more sections (six in this case) are 
required for broadband operation, but the overall transformer 
length of 127 mm is shorter than the previous four-section 
design due to reduced dispersion (λg=1.3λ0). 

 
Fig. 2 Performance comparison between two constant-width dual-

C-band transformers; four-section harmonic and six-section 
broadband design. 

 
In comparing the performances shown in Fig. 2, it is 

obvious that the return loss of the six-section design (solid 
line) within the two bands can be improved if the 
specifications between the bands are relaxed, i.e., if between 
the bands, a performance similar to the four-section design 
(dashed line) is obtained.  

Therefore, we recommend the following design strategy: 
- Design a broadband transformer covering both bands. 

(Note that return-loss specifications are not required to 
be met in this step.) 

- In view of the lack of synthesis procedures for three or 
more sections, optimize the broadband design under the 
constraint that the overall length is not increased. 

For the results shown in the next section, coupled-integral-
equations and mode-matching techniques are used as 
analysis tools. Both techniques have been previously 
verified by HFSS, e.g. [9], [10]. Optimization is based on a 
MiniMax routine, e.g. [11]. 

III. RESULTS 

Following the above guidelines, the six-section broadband 
design of Fig. 2 was optimized for return-loss improvement in 
the two bands. The result is shown in Fig. 3 as a solid dark 
line. Compared to Fig 2, the in-band return loss is improved 
by more than 4 dB, and the overall length is slightly reduced 
by 5 mm. 

Also shown in Fig. 2 (gray lines) is a tolerance analysis for 
maximum deviations of ± 0.02 mm in a fabrication process. 
Note that the component maintains specifications under such 

conditions even though this has been verified to be a worst-
case scenario (c.f. [12]). 

 
Fig. 3 Performance and tolerance analysis (± 0.02 mm) of a six-

section constant-width dual-band rectangular waveguide transformer 
in C-band. 

 
For extended C-band operation, e.g. 3.4 - 4.2 GHz and 5.85 

– 6.65 GHz (e.g. Satcom INTELSAT), rectangular waveguide 
transformers are avoided due to the problem of higher order 
mode excitation and propagation in the waveguide system. In 
such applications, a square input waveguide interface of an 
antenna feed may have to be connected to a ridge waveguide 
(c.f. Fig. 1b) cross section, providing sole fundamental mode 
propagation. Commonly, these designs have slightly reduced 
return-loss specifications (30 dB) compared to the standard 
rectangular waveguide design.  

 
Fig. 4 Initial and optimized performances of a dual-band ridge 

waveguide transformer in C-band according to Fig. 1b. 
 
Fig. 4 shows the performance of a dual-band ridge 

waveguide transformer. According to the design guidelines, 
an initial broadband design is performed. This is shown for an 
eight-section transformer as a dashed line in Fig. 4. Note that 
this design has been obtained by adjusting the gap between 
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the ridges to fit a broadband impedance profile and that it does 
not satisfy the return-loss specifications in either one of the 
bands. The component’s performance after optimization is 
depicted as a solid line. Not only the design specifications are 
satisfied in both bands, the transformer length is also reduced 
by 19 mm, i.e. more than ten percent. (For verification of the 
code by HFSS, the reader is referred to [10].) 

Several Ku-band satellite applications utilize the 11.7 - 12.5 
GHz and 17.3 - 18.1 GHz frequency ranges. The input port is 
a 16.3 mm square waveguide and the output port a standard 
WR62. Therefore, this is not a constant-width design but 
follows the profile in Fig. 1a. Fig. 5 shows the performance of 
a four-section dual-band transformer that satisfies the 
indicated design specifications. The overall length is only 25.5 
mm. 

 
Fig. 5 Four-section dual-band rectangular waveguide transformer 

for Ku-band applications. 
 
In order to experimentally verify the design approach 

presented here, the Ku-band transformer in Fig. 5 was re-
optimized by the commercial software package µWave 
Wizard© to include an end-mill cutter radius of 3 mm for ease 
of fabrication.  
 Fig. 6 compares the computed (solid line) with the 
measured (dashed line) performance. Very good agreement is 
obtained over the entire frequency range, and the 
specifications of 38 dB return loss in the two frequency bands 
are met. Note that the maximum difference between the 
computed and measured reflection coefficient is less than one 
percent. The deviations of the curves result mainly from 
limitations of the achievable accuracy of the test equipment 
(VNA 8510) for the measurement of reflection coefficient 
values below –40 dB. This holds in particular for the lower 
frequency range from 10 GHz to 12 GHz which is rather close 
to the cutoff frequencies of the connecting waveguides and 
consequently below their recommended operating frequency 
bands (WR62, fc=9.5GHz, recommended band 12.4 - 18 GHz; 
square waveguide 16.3 mm, fc=9.2GHz). Due to strong 
dispersion, the inherent return loss of the used precision load 

for the square waveguide port decreases from 46 dB at 12 
GHz to 34 dB at 10 GHz. However, this is still sufficient for 
the quality of the measurement, since the band of interest is 
close to 12 GHz and the return loss of the dual-band 
transformer decreases rapidly to 14 dB at 10 GHz (c.f. Fig. 6).  
 The measured insertion loss is better than 0.05 dB in both 
bands. A photograph of the prototype dual-band transformer 
is depicted in Fig. 7.  

 
Fig. 6 Comparison between measured and computed results for the 

four-section dual-band transformer prototype; µWave Wizard© (solid 
line), measurement (dashed line). 

 
Fig. 7 Photograph of the dual-Ku-band prototype transformer and 

size comparison with a Canadian quarter coin. 

IV. CONCLUSIONS 

The design strategy for dual-band waveguide transformers 
results in short and compact components that satisfy the 
stringent specifications of today’s satellite and terrestrial 
applications. Various designs in rectangular and ridge 
waveguide technologies demonstrate the feasibility of the 
approach, which is verified through measurements performed 
at a Ku-band prototype. 
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