Design of Compact Dual-Polarized Printed-Circuit Antenna for Ultra-Wideband Applications

K. Rambabu, M.Z. Alam and J. Bornemann*
Department of Electrical and Computer Engineering
University of Victoria, Victoria, BC, Canada V8W 3P6

Abstract — This paper presents a small printed-circuit antenna, which is well suited for ultra-wideband and dual-polarized applications. By exciting six fundamental-mode resonance frequencies and utilizing their respective harmonics, a broadband operation is achieved covering a frequency range between 4.6 and 13.6 GHz with a VSWR less than 2.2 and a gain better than 2 dBi. The design is verified by commercially available software and measurements.

Index Terms — Ultra-wideband antennas, printed-circuit antennas, multi-resonance antennas.

I. INTRODUCTION

Ultra-wideband (UWB) or pulsed (time-domain) communication is becoming increasingly popular for short-range and high bandwidth applications, e.g. [1]. UWB antenna performance can be achieved with traditional antenna configurations like the log periodic form or the zigzag approach, e.g. [2]. In order to achieve antenna miniaturization for handset applications, it is necessary to employ printed-circuit technology on a relatively small substrate area. Such compact wideband dual-polarized patch antennas have been proposed in [3], [4]. By overlapping three squared patches along their diagonals, the bandwidth can be significantly increased.

Since in wireless communications, polarization loss is encountered due to random scattering from objects and obstructions in urban environments, dual-polarized antennas offer an advantage over devices operating, e.g., in a single linear polarization.

This paper focuses on the principle design strategies for the patch antenna with overlapping squares (Fig. 1) in order to present the design engineer with guidelines and achievable performance characteristics.

II. DESIGN

This section presents the design by overlapping patches and explains the basic design philosophy.

A. Design Principle

The design principle is based on staggering different patches (resonators) and combining them in a single metallization on a substrate as shown in Fig. 1. The different resonant frequencies must be separated such that the overall integration of the resonant frequencies will result in satisfactory UWB performance. The achievable bandwidth depends on the number of resonances.

As is indicated in Fig. 1, the proposed radiating structure has six different physical dimensions related to different basic resonances. The first \(f_1 \) and sixth \(f_6 \) resonant frequencies should be chosen such that the harmonic of the first basic resonance \(f_7 = 2f_1 \) will be able to integrate with \(f_6 \). Similarly, the harmonics of \(f_2 \) to \(f_6 \) form resonances at \(f_8 \) to \(f_{12} \) and extend the bandwidth towards higher frequencies. By covering the lower part of the bandwidth with basic resonances and the upper part with harmonics, it is possible to stagger twelve resonances, thus achieving a UWB performance.

B. Design Method

This section presents the design steps to achieve six different basic resonant frequencies, which are closely spaced to yield wide bandwidth.

Step 1: Chose the dimensions \(W_2 \times W_3 \) of the center square patch such that the fourth basic resonance \(f_4 \) will be approximately at the...
C. Feeding Technique
determined from [5].

To select a feed location for better performance, \(S_1 \) and \(S_2 \) in Fig. 1 can be optimized using full wave commercial software.

D. Radiation Characteristics

At each resonant frequency, the overlapping-squares antenna has vertical and horizontal radiating edges, which will radiate to give dual-polarized radiation. Even though the radiated field has uniform vertical and horizontal components, due to the lack of proper phase difference between them, purely circular polarization is hardly possible over a wide frequency range. However, at particular frequency points, nearly circular polarization might occur.

The orientation of the main beam at a particular frequency depends on the excitation levels of the vertically and horizontally radiating edges. Due to uneven excitation of these field components, the main beam may tilt towards the stronger excitation. The antenna gain may decrease at the band edges due to the small radiating aperture compared to conventional microstrip patch antennas.

III. RESULTS

To demonstrate the above theory and present typical performance characteristics, a UWB antenna on a substrate with \(\varepsilon_r = 2.35 \) and thickness \(h = 3.42 \) mm was designed. The dimensions of the three square patches and their overlapping sides are \(W_1 = 7.5 \) mm, \(W_2 = 13.5 \) mm, \(W_3 = 9.5 \) mm, \(S_1 = 6.5 \) mm and \(S_2 = 7 \) mm. The gap between the radiating patch and the feed is \(g = 0.25 \) mm, and the dimensions of the capacitive pad are \(2.5 \times 2.5 \) mm².

Although it is known that thicker substrates give better bandwidth, the height of this substrate of \(h = 3.42 \) mm (including two layers of 3.17 mm and 0.25mm) is relatively small as compared to other designs reported in the literature.

The feed point in Fig. 1 with respect to the lower left corner of the entire structure is located at 3.25 mm to the right and 9.5 mm up. By choosing the optimal feed point it is possible to excite the diagonal mode corresponding to the shorter diagonal so that six different resonant lengths (\(\ell_1 \) to \(\ell_6 \) in Fig. 1) are obtained on the antenna. A disadvantage of the probe feed is that at higher frequencies, the probe inductance tends to limit the bandwidth of the antenna. However, the capacitive pad can be designed such that it partly compensates for this effect.

In order to demonstrate the effect of the overlapping patches with respect to the fundamental and harmonic resonances, the real and imaginary parts of the input impedance of the antenna — as computed with Ansoft Designer® - are shown in Fig. 3. In the lower frequency range, resonances are noted at frequency points, where the imaginary part is zero and the real part is either maximum or minimum. At higher frequencies, the probe inductance dominates the capacitance introduced by the compensating pad by approximately 20 ohms (as indicated by the ellipse in Fig. 3).
In a design scenario, the fundamental resonances and their harmonics are determined from the design expressions given in (1) which include the effects of fringing fields. Table I shows a comparison between such theoretical resonances and those obtained by the commercial software package Ansoft Designer®. Considering the simplicity of the model using only path lengths and fringing lengths, very good agreement is observed.

TABLE I
Resonance frequencies of individual antenna paths; comparison of theory (1) with Ansoft Designer®.

<table>
<thead>
<tr>
<th>Resonant length (c.f. Fig. 1)</th>
<th>Resonant frequency using (1)</th>
<th>Resonant frequency using Ansoft Designer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main diagonal</td>
<td>3.68</td>
<td>Not excited</td>
</tr>
<tr>
<td>Diagonal ℓ_1</td>
<td>4.44</td>
<td>4.18</td>
</tr>
<tr>
<td>Side ℓ_2</td>
<td>4.93</td>
<td>4.74</td>
</tr>
<tr>
<td>Side ℓ_3</td>
<td>5.41</td>
<td>4.96</td>
</tr>
<tr>
<td>Side ℓ_4</td>
<td>5.79</td>
<td>5.79</td>
</tr>
<tr>
<td>Curve ℓ_5</td>
<td>6.97</td>
<td>7.12</td>
</tr>
<tr>
<td>Curve ℓ_6</td>
<td>8.03</td>
<td>7.85</td>
</tr>
<tr>
<td>Harmonic of ℓ_1</td>
<td>8.88</td>
<td>8.50</td>
</tr>
<tr>
<td>Harmonic of ℓ_2</td>
<td>9.86</td>
<td>9.77</td>
</tr>
<tr>
<td>Harmonic of ℓ_3</td>
<td>10.82</td>
<td>10.45</td>
</tr>
<tr>
<td>Harmonic of ℓ_4</td>
<td>11.59</td>
<td>11.61</td>
</tr>
<tr>
<td>Harmonic of ℓ_5</td>
<td>13.94</td>
<td>12.76</td>
</tr>
<tr>
<td>Harmonic of ℓ_6</td>
<td>16.06</td>
<td>15.33</td>
</tr>
</tbody>
</table>

As mentioned earlier, the orientation and overlap of the patches and their resulting resonant paths form two perpendicular resonance directions at every resonant frequency, thus facilitating dual-polarized radiation. As an example, the radiation patterns in the two perpendicular planes at 6 GHz are shown in Fig. 4. An analysis of the axial ratio versus frequency (Fig. 5) indicates that nearly circular polarization occurs in only three narrow frequency bands at which the phase difference of the two perpendicular field components is in the vicinity of 90 degrees. However, even in these bands, the axial ratio does not drop below 3dB. Thus for the vast majority of frequencies in the wide spectrum between 4GHz and 16GHz, the antenna radiation is dual-polarized rather than circularly polarized.

The gain of the antenna is shown in Fig. 6. It remains above 2 dBi between 4.6 GHz and 13.6 GHz and decreases towards higher frequencies. Note that this gain plot is for the plane $\theta = 30^\circ$ and $\phi = 45^\circ$. It was found that due to the unequal excitation of the perpendicular polarizations at each resonant frequency, the main beam is squinted towards that direction at higher frequencies.
occurs due to the unequal radiation aperture sizes at different frequencies. For a comparison of performance characteristics of a large number of UWB antennas, the reader is referred to [4].

Fig. 7 shows the input VSWR computed with both Ansoft Designer® and HFSS®. Very good agreement is obtained, hence confirming the UWB character of the performance. Between the 2-dBi-gain frequencies, the computed VSWR is better than 2.2.

In order to verify the principle design strategy, a prototype was fabricated and its VSWR measured over frequency. However, since a dielectric sheet with $\varepsilon_r=2.35$ and 0.25mm thickness was unavailable at the time of fabrication (c.f. Section III, first paragraph), a thickness of 0.8mm was chosen and this modified design slightly optimized for better bandwidth using Ansoft Designer®. Fig. 8 shows the comparison between measured and simulated VSWR’s of the antenna. The VSWR is less then 2.2 for a bandwidth of about 99 percent.

VI. CONCLUSION

Principle design guidelines for a compact dual-polarized printed-circuit antenna for UWB applications are presented. The wideband performance is obtained through the excitation of a multitude of fundamental resonances and their individual harmonic frequencies. Since each resonance is excited in two polarizations, the radiation characteristics support dual-polarization operation. The prototype design example features a 99 percent bandwidth in which the gain is better than 2 dB and the VSWR better than 2.2.

REFERENCES