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Abstract—A simple analytical method for the analysis and design 
of electromagnetic band-gap (EBG) structures formed by via-
holed metal patches is presented. Contrary to a known approach, 
this technique correctly predicts the first stopband, which is often 
utilized in printed antenna applications, and significantly extends 
the frequency range of analysis by including complex 
propagation constants. The approach is verified by comparisons 
with results of commercially available software. 
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I.  INTRODUCTION 
Advances and applications of Electromagnetic Band-Gap 

(EBG) structures have shown that the excitation of surface 
waves can be considerably reduced. Several types of 
microstrip-based EBG structures have been proposed for a 
variety of applications, e.g. [1], and were analyzed and 
designed by using numerical techniques such as the finite-
difference time-domain [2] and the finite-element method [3]. 
Equivalent-circuit methods have been developed in order to 
quickly design EBG structures for desired pass- and stopbands. 
These models can be easily programmed when field solvers 
(such as [2]) are not available. Moreover, they require less 
computation time and, therefore, aid in designing EBG’s in a 
timely fashion [4], [5], [6].  

One of these techniques was presented in [5] for 
applications to via-holed patches, e.g. [7], [8], as shown in Fig. 
1. In applying the related formulation, however, it was found 
that the method introduces certain assumptions, which prevent 
the computation of the first stopband, i.e. the frequency range 
between d.c. and the first passband. Moreover, the technique in 
[5], as well as those in [4] and [6], assume non-attenuated 
propagation in the passband and, therefore, fail to allow 
simultaneous propagation and attenuation.  

Since in the first stopband, miniaturization is achieved, i.e. 
the size of the EBG is small, thus offering attractive solutions 
towards compact component designs, this paper introduces an 
extended analytical method with the goal to develop a simple 
yet accurate computational analysis and design tool for EBG’s 
over a broad bandwidth. Based on approaches, which differ 
from those in the references, to model the gaps between 
microstrip patches in both directions (Fig. 1), this technique 
extends the applicable frequency range by correctly predicting 
the first stopband. Moreover, the model is applicable over a 

wider bandwidth due to the general assumption of a complex 
propagation constant. Reasonable agreement is demonstrated 
with results obtained from commercial field solvers as far as 
attenuation over a limited number of cells is concerned. 

II. THEORY 
Fig. 1 shows the schematic diagram of the EBG lattice and 

its essential dimensions. A square metal sheet connected to the 
continuous ground plane through a centered via hole or thin 
wire [7] constitutes the unit cell of the lattice.  

Figure 1. Schematic diagram of the EBG structure formed by metal patches 
with centered via holes. 

Our model is shown in Fig. 2. Fig. 2a shows the cross 
section in longitudinal direction. It includes the microstrip line 
of impedance Z0 and propagation constant βm, the inductance L 
of the via hole, and the capacitive section to represent the gap 
between patches. The propagation constant and impedance of a 
single microstrip line is varied by the presence of the transverse 
patches (see below). Several models have been implemented 
for the inductance L, e.g., [5], [6], [9]. It was found that [6] 
provides the best results as the via hole diameter is related to 
the dimensions of a periodic surface.  

The gap between patches or microstrip lines is often 
modeled by a π section of capacitances [10], [11]. For the wide 
range of EBG parameters investigated, however, this approach 
was often found out of validity range and produced negative 
series capacitances. Therefore, the models proposed in [12] and 
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[13] were used in which the gap is treated as an admittance 
inverter with admittance Bg centered between two lines of 
length ∆lg [13] (Fig. 2a). 

In order to incorporate the influence of the transverse 
patches, a capacitive reactance resulting from the coupling to 
those patches is normally used, e.g., [5]. It was found, however, 
that such model produces a number of sharp transitions 
between pass- and stopbands, which do not appear in solutions 
of the electromagnetic codes. Therefore, two other approaches 
have been investigated. First, the gap to the transverse patches 
can be treated similar to the gap in longitudinal direction. The 
resulting capacitance Cc will then contribute to a wider patch of 
width weff (Fig. 2b). Alternatively, the transverse patches can be 
modeled as coupled lines according to Fig. 2c. Both approaches 
have been investigated and were found to produce similar 
results. Finally, for given cross-section dimensions of the 
microstrip line, propagation constants and characteristic 
impedances are calculated via [11] – [13] and include the 
metallization thickness and frequency dependent terms.  

 

 
Figure 2. Transmission-line model of the unit cell in direction of propagation 

(a), and in transverse direction using an effective width (b) or coupled lines (c). 

Once Z0 and βm are known, the ABCD matrix of the 
structure in Fig. 2a is computed and normalized to Z0, which is 
the characteristic impedance on both ends of the unit cell (Fig. 
2a). Then voltages and currents at the left of unit cell n of a 
periodic structure are related to those of cell n+1 by 
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Considering that AD-BC=1 for a passive circuit, this results in 
a quadratic equation for λ 

                          ( )2 1 0A Dλ λ− + + =                    (2) 

where        j aRe eφ γλ = = ,   jγ α β= + .          (3) 

The two complex solutions for λ specify the attenuation and 
propagation constants of the EBG structure [14]. 

             ln( ) ,R a aα β φ= =           (4) 

In order to relate the attenuation constant, α, for the 
periodic (infinite) structure to the actual transmission 
coefficient |S21| introduced by a finite number of cells, N, we 
employ a relationship introduced in [15] and verified in [16] 

                21 8.686S dB N pα= −                                 (5)                   

where p=a is the length of the unit cell. 

III. RESULTS 
As a direct comparison between a previous and our 

equivalent-circuit model, the one used in [5] and our approach 
were implemented in simple Matlab and/or Fortran routines. In 
order to be able to compare attenuation over a finite number of 
cells, we added the calculation of the attenuation constant to 
the model in [5], which follows straightforwardly from [5], and 
applied equ. (5) for a given number N of cells. 

Fig 3a depicts the propagation and attenuation constants 
calculated from this approach and compares it to results using 
the model in [5]. Several differences are observed: First, the 
method in [5] (light curves) predicts a wide passband of 
varying propagation constant β (light dashed line) up to 2.55 
GHz, whereas our method clearly indicates a stopband with 
attenuation constant α (dark dotted line). The unattenuated 
passband starts at around 2.55 GHz for both methods but is 
wider in our model (dark solid line) than in that of [5]. Beyond 
2.95 GHz, the model in [5] predicts a variety of either 
passbands (light dashed line) or stopbands (light dash-dotted 
lines). Our model produces a complex propagation constant  
(dark solid and dotted lines) between 3.6 GHz and 8.1 GHz, 
and propagation continues up to 10 GHz. 

In order to qualitatively verify the results, an array of 7x7 
cells was analyzed by IE3D, Ansoft Designer and HFSS.  
In Fig. 3b the results are compared to our attenuation values 
and those using the method in [5] as obtained from equ. (5). All 
three commercial software packages (although their differences 
are surprisingly large) clearly predict a stopband up to about 
2.6 GHz followed by a passband much wider than predicted by 
the method in [5] (light long-dashed line). The end of this first 
passband falls very close to our prediction (dark solid line). 
Towards higher frequencies, the commercial packages predict 
continuing propagation with some attenuation. Although the 
agreement in this higher frequency range is not as good as 
towards lower frequencies, our model correctly predicts the 
first stopband, the first passband and the continued propagation 
thereafter. In comparison, the model in [5] fails to predict the 
first stopband, produces a narrower first passband directly 
followed by a narrow stopband and another narrow stopband at 
7.5 GHz. None of these stopbands are qualitatively verified by 
any of the three commercial electromagnetic codes. We 
therefore conclude that the results obtained with our model, as 
simple as it is, are in good agreement with other, more 
complicated techniques and that it is superior to that of [5]. 

 



(a)

(b) 
Figure 3. (a) Comparison of propagation characteristics between this model and 
that of [5];  (b) transmission coefficient of a 7x7 cell structure and comparison 
between this model,that of [5] and three commercial field solvers. Dimensions 
(c.f. Fig. 1): w=6.0mm, g=0.5mm, a=6.5mm, d=1.0mm, h=2.54mm, εr=10.2. 

Fig. 4a shows the propagation characteristics of an EBG 
structure with wider stopband performance. In comparison with 
the configuration in Fig. 3, the permittivity is reduced and the 
patches as well as the substrate height increased. For a 7x7 
array, our |S21| data is compared to results from IE3D and 
Ansoft Designer in Fig. 4b, and good agreement is observed. 
The passband is correctly predicted (although somewhat 
wider), and the basic shape of the curve is reproduced. 

The final example uses dimensions appropriate for 
fabrication in LTCC technology. Fig. 5a presents the 
propagation characteristics and Fig. 5b a comparison of 
transmission behavior with HFSS. Good agreement is again 
observed, especially for the start of the passband.  

Note that the ripple in the passbands of the field solvers’ 
calculations is attributed to reflections within the small number 
of cells. They should weaken once a higher number of cells is 
considered, which was not possible in this investigation due to 
memory limitations. 

IV. CONCLUSIONS 
The simple and improved equivalent-circuit model presents 

a viable approach for the fast analysis and design of EBG 

structures formed by via-holed patches. The first stop- and 
passbands are correctly predicted over a broad frequency range 
as verified by comparison with independent numerical codes.  
Moreover, the complex propagation constant towards higher 
frequencies is an adequate representation of behavior as 
compared to field solvers. Hence this technique represents an 
improvement over known similar models. Although the derived 
propagation characteristics apply only in the two orthogonal 
directions of the EBG structure, other directions of propagation 
can be analyzed using superposition. 

(a) 

(b) 
Figure 4. Propagation characteristics (a); transmission coefficient (b) 
comparing the results of this method (solid line with those of IE3D (dashed 
line) and Ansoft Designer (dash-dotted line). Dimensions (c.f. Fig. 1): 
w=8.0mm, g=0.5mm, a=8.5mm, d=1.0mm, h=3.175mm, εr=2.35.  
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