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Abstract—A new formulation to obtain the eigenmode spectra of 
irregular waveguides is presented. The method uses modified 
rectangular waveguide modes as expansion terms and leads to a 
classical eigenvalue problem. A two-dimensional negative 
rectangular step function is introduced to satisfy boundary 
conditions for TM modes. The procedure is combined with a 
mode-matching code and is used to analyse and design waveguide 
structures involving resonating components. The results are 
verified by measurements and comparison with existing full-wave 
modelling tools. 
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I.  INTRODUCTION 
Modern waveguide technology employs a variety of 

components with irregular cross sections. An attempt to 
classify such structures is presented in [1].  

In order to incorporate irregular waveguides into computer-
aided design procedures, the mode sequences and related 
expansion coefficients are normally calculated from a series 
expansion that, after truncation and forming inner products 
with selected test functions, leads to a matrix equation. Earlier 
formulations resulted in singular-value equations, e.g. [2] – [4], 
which usually require new programming efforts for changing 
boundary conditions. Therefore, classical eigenvalue 
approaches have become more popular as they are easily 
adapted to changing contours of irregular waveguides.  

A number of different approaches have been presented over 
the years and their solutions combined with some form of 
modal analysis. These include the boundary integral resonant 
mode expansion, e.g. [5], [6], the finite-element method, e.g. 
[7], [8], the electric and magnetic field integral equation 
technique, e.g. [9], and others such as, e.g., neural network 
models [10]. An attempt to use the mode distributions of the 
surrounding regular waveguides as expansion and testing 
functions is presented in [11]. However, it was found that in the 
presence of sharp edges, the method requires the use of edge-
conditioned basis functions, which – in turn – limits general 
applicability to structures with predefined edge structure. An 
interesting approach, which leads to a classical symmetric 
eigenvalue matrix equation, is presented in [12], [13]. 
However, the use of polynomial approximations involving 
Gamma functions limits efficient code implementation and, 

therefore, only simple discontinuities have been presented so 
far [14], [15]. 

This paper focuses on a combination of the approaches 
used in [11] and [12], [13]. It will be shown that by using the 
mode composition of the surrounding regular waveguide, the 
TE-mode spectrum of an irregular waveguide is obtained 
straightforwardly. The TM-mode spectrum requires a 
modification of the regular waveguide modes to incorporate the 
boundary conditions of the irregular waveguide. The results 
demonstrate the general applicability of this approach. 

II. THEORY 
The mode spectrum eigenvalue formulation is 

demonstrated for Cartesian coordinates using rectangular 
waveguides with a number arbitrarily positioned ridges. The 
only restriction is that individual ridges must be connected to 
the housing or to each other with at least one of them 
connected to the housing. A cross-section example is depicted 
in Fig. 1 with each ridge defined by its lower-right coordinates 
(ei, di) and surface area wi  ti. 

According to [12], [13], the mode spectrum is obtained 
from  
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where T is the transverse Laplacian operator, kc are the 
eigenvalues, and Hz, Ez are the longitudinal field components 
of TE and TM modes, respectively. By using expansion 
functions for the z components 

1

P zpz
n

pz zp

hH
c

E e            (2) 

and truncating the series, a generalized eigenvalue equation of 
the form  
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is obtained, where diagonal matrix kc holds the P eigenvalues 
and matrix c the corresponding eigenvectors. The elements of 
matrices K and M are given by 
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where T replaces hz or ez, and S represents the cross section of 
the irregular waveguide. Note that in order to maintain 
flexibility of the positions of all ridges, all surface integrals are 
computed as 
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Figure 1.  Cross section of a rectangular waveguide with three arbitralily 

positioned ridges. 

So far, this procedure is known. We are now using the  
mode spectrum of the housing as expansion functions.  While 
the TE modes of the housing  
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( 0k being the Kronecker delta) satify the bounday conditions 
for the TE modes in (4) immediately, those for the TM modes 
need to be forced to vanish over the cross sections of the 
ridges. 
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This is achieved by a two-dimensional negative rectangular 
step function, which is defined as 
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Note that the derivatives of (7) (with (8)) in (4) lead to delta 
functions. They are considered by using the sifting theorem 
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Once the eigenvalues and eigenvectors are obtained, the 
TE-to-TE- and TM-to-TM-mode coupling integrals from the 
regular (housing) to the irregular waveguide follow 
straightforwardly from matrices K as the housing modes are 
used as expansion functions.  Only TM-to-TE-mode coupling 
needs to be computed separately. Power normalization of the 
irregular waveguide modes is accomplished by using matrices 

M.  Note that functions U in (8) do not contribute to TM-to-
TM-mode coupling since the boundary conditions of the 
transverse electric field of the regular waveguide force them to 
vanish on the faces and edges of the ridges.  

One of the disadvantages of this method is that quite a few 
waveguide modes are required to compute the mode spectrum 
of the irregular waveguide with sufficient accuracy. Moreover, 
the symmetric matrices in (4) become ill-conditioned if the 
sum of the cross sections of the ridges occupy too much space 
of the cross section of the regular waveguide. An adaptive 
process is used in such cases to find a reasonable compromise 
between accuracy and computational efficiency. 

The advantage of this method is that the ridges can be 
arbitrarily placed and, as we will show in the following section, 
can even be used for structures in which regular waveguides of 
different cross sections are created. 

III. RESULTS 
In this section, we will demonstrate the capabilities of the 

mode spectrum eigenvalue formulation and verify the results 
obtained. The examples are based on irregular rectangular 
waveguides with one or two ridges in the cross sections. 

Fig. 2 shows a performance comparison for a cascaded 
double-ridge component. Excellent agreement is obtained with 
results obtained with the mode-matching technique (MMT) 
(c.f. [16]) as well as with S11 measurements presented in [3]. 

 
Figure 2.  Computed and measured [3] performance of a component formed 

by cascaded rectangular and double-ridged waveguides. 

A six-resonator below-cutoff T-septum waveguide filter for 
the lower Gigahertz range is presented in Fig. 3. The mode 
spectrum eigenvalue formulation is in excellent agreement with 
data obtained from the MMT and the coupled-integral-equation 
technique (CIET) in [17] (Fig. 3a). In order to demonstrate 
agreement with respect to phase calculations, the group-delay 
response is shown in Fig. 3b and also shows excellent 
agreement with a combined MMT-CIET approach. 

The next two examples are to demonstrate that even in 
cases where the ridges are placed such that smaller regular 
waveguides are obtained, the eigenvalue formulation performs 
accurately. Fig. 4 shows the performance of an inductive iris 
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filter where two ridges are placed such that they cover each 
approximately one quarter of the cross section of the 
rectangular waveguide. The eigenvalue formulation correctly 
computes the eigenvalues and eigenvectors of the apertures 
formed by the irises as demonstrated by excellent agreement 
with results obtained with the CIET. 

 
(a) 

 
(b) 

Figure 3.  S-parameter (a) and group-delay (b) performances  of a six-
resonator below-cutoff T-septum waveguide filter [17].  

An interesting case is that of the metal-insert filter presented 
in Fig. 5. First of all, only one single ridge is used to satisfy 
the cross section while others are set to zero without any 
additional change to the code. Secondly, the eigenvalues 
appear in pairs – as expected – with each pair representing 
those of both the left and the right apertures. The excellent 
agreement with MMT results in Fig. 5 verifies the 
applicability of this technique to ‘standard’ waveguide 
problems.  

Of course, the CPU times to compute the eigenvalues of the 
apertures in Fig. 4 and Fig. 5 are far beyond those of 
algorithms which use the analytically known eigenvalues of 
the rectangular apertures. Therefore, these examples only 
serve the purpose to demonstrate the flexibility of the method. 

 
Figure 4.  Performance comparison for a four-resonator inductive-iris filter.  

 
Figure 5.  Performance comparison for a five-resonator metal-insert filter. 

The following two examples involve below-cutoff ridge 
waveguide filters with slightly different shapes. Fig. 6 shows 
the performance of one with pedestals. The cutoff frequency 
of the pedestalled ridge cross section is close to 3.5 GHz. A 
six-resonator filter with wide stopband characteristics is 
obtained after optimization of individual section lengths.  

The structure used in Fig. 7 is very simlar, but instead of the 
pedestal, this ridge is converted into a smaller ridge section 
which can serve – if more of such smaller sections are 
incorporated in the cross section – as a way of modelling 
rounded ridges. The performance of  such a below-cutoff ridge 
waveguide filter is similar to that of Fig. 6, except for the 
reduced return loss at the lower midband frequency. 

IV. CONCLUSIONS 
The mode spectrum eigenvalue formulation for irregular 

cross sections presents a viable option for waveguide 
component analysis. The method is not necessarily faster than 
existing techniques but provides flexibility and easy 
implementation in existing routines based on modal matching 
approaches. Accuracy and flexibility are demonstrated by 
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comparing the results for a variety of components with those 
obtained from measurements and other full-wave field solvers. 

 
Figure 6.  Performance  of a six-resonator below-cutoff ridge waveguide 

filter with pedestals. 

 
Figure 7.  Performance  of a six-resonator below-cutoff ridge waveguide 

filter with two different ridges in the cross section. 
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