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Abstract 

 
The design of new circular waveguide evanescent-

mode filters is facilitated by an eigenvalue approach 
which allows an arbitrary number of ridges to be 
placed at arbitrary locations within a circular 
waveguide cross sections. Several four-pole filter 
examples with passbands in the 7 GHz to 10 GHz 
range include double ridges, T-septa and key-shaped 
inserts. Although higher-order-mode excitation is 
observed in the larger input and output guides, their 
levels are low enough to refrain from influencing the 
operation of the filters. The performance is validated 
by comparison with measurements and the commercial 
full-wave field solver CST Microwave Studio 
 
1. Introduction 
 

The evanescent-mode filter is a well known 
approach in rectangular waveguide technology, e.g. 
[1]–[3], for the miniaturization and stopband 
enhancement of waveguide filters. They require a 
transition from larger input/output guides to a smaller 
waveguide which is operated below cutoff. Ridges are 
implemented at certain locations within the smaller 
waveguide. They act as resonators by lowering the 
cutoff frequency of the smaller waveguide to 
approximately that of the larger connected waveguides. 
Whereas the evanescent-mode filter concept has found 
several applications within rectangular waveguides, its 
counterpart in the circular waveguide housing has so 
far been employed only sparsely, e.g. [4]. 

Therefore, this paper proposes new circular 
waveguide evanescent-mode filter designs with 
different cross sections whose reliable mode-sequence 
calculations become possible by a recently developed 
eigenvalue mode-spectrum analysis [5]. This technique 
allows the placement of arbitrary numbers of ridges at 
arbitrary locations within a circular waveguide cross 
section and thus opens new possibilities for circular 

waveguide component design. Due to the reduction in 
cutoff frequency, the ridged cross sections are foremost 
employable in evanescent-mode-filters and offer a 
considerable extension of the upper stopband 
compared to, e.g., circular waveguide iris filters in [6]. 

In combination with the standard mode-matching 
technique (MMT), the eigenvalue mode-spectrum 
analysis becomes a fast and reliable tool for circular 
waveguide evanescent-mode filter design. After briefly 
describing the theory and verifying the underlying 
software code in Section 2, Section 3 presents designs 
of four different filter configurations. 
 
2. Theory 
 

Fig. 1 shows the cross section of a circular 
waveguide with three arbitrarily positioned ridges 
whose locations and sizes are characterized by 
coordinates (ρi, φi) and cross-section dimensions (Δρi, 
Δφi), respectively. Note that the ridges are of a shape 
that they are defined in the circular coordinate system. 
This is a common approach in circular waveguide 
technology, e.g. [4], [7] – [11]. In order to avoid the 
TEM mode, restrictions are placed such that individual 
ridges must be connected to the circular housing or to 
each other with at least one of them connected to the 
housing. 

The basic eigenvalue approach presented in [12], 
[13] is translated to the circular-cylindrical 
coordinate system. Then the mode spectrum of a 
circular waveguide with N conical ridges (Fig. 1) is 
obtained by expanding the longitudinal field 
components of TE and TM modes as   
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Instead of using polynomial approximation and 
super-quadratic functions [13], we select the modes 
of the circular housing, or modifications thereof, as 
basis functions. Those of the TE modes 
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satisfy the bounday conditions for the TE modes in the 
ridged circular waveguide. 

 
Figure 1. Cross section of a circular waveguide with three 
arbitrarily positioned ridges. 
 

For TM modes, however, the longitudinal electric 
field must be forced to vanish over the cross 
sections of the ridges. This is achieved by a two-
dimensional constraint function U which sets ezp in 
(3) to zero over the cross sections of all N ridges. 
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In (2), and (3), Jm are the Bessel functions of first 
kind and order m; kch and kce are the cutoff wave 
numbers of TE and TM modes, respectively, in the 
circular waveguide housing; and δ0m is the Kronecker 
delta. Note that the derivatives of (3) contain delta 
functions which are considered using the sifting 
theorem. For details, the reader is referred to [5]. 

The eigenvalue matrices kc of the TE and TM 
modes of the ridged circular waveguide, and their 
respective eigenvector matrices c, are obtained from 
a classical eigenvalue equation   
      

  2
cKc k Mc=              (5) 

where matrices K and M are given in [5]. Since the 

coupling matrices from the circular housing to the 
circular ridged waveguide as well as power 
normalizations follow straightforwardly, this 
approach lends itself to be immediately incorporated 
in an MMT code. The interested reader will find in 
[5] the complete set of equations, including the 
combination of the eigenvalue mode-spectrum 
analysis with MMT and related coupling integrals. 
We refrain from reproducing this work. 

In order to verify the underlying code in a filter 
arrangement, Fig. 2 shows a comparison of this 
method with measurements presented in [14]. 
Considering the facts that the measurements include 
rectangular to circular waveguide tapers at both 
ports and that the theoretically assumed conical 
septum shape was actually fabricated by etching a 
thin sheet of metal, the agreement is excellent and 
validates the analysis concept presented in this 
section. 

 
Figure 2. Performance of a five-resonator metal-insert 
filter in circular waveguide technology. Comparison of 
results obtained with this method and measurements [14]. 
 

The design of circular waveguide evanescent-mode 
filters proceeds as follows. Based on the midband 
frequency of the filter and the respective radius of the 
input/output guides, the small waveguide radius (c.f. 
inset of Fig. 3) is selected such that its cutoff frequency 
is sufficiently above the midband frequency of the 
filter. The ridges are designed to reduce the 
fundamental-mode cutoff frequency of the small 
waveguide to approximate that of the larger 
input/output waveguides. We then compute the 
scattering matrix of the discontinuity between the 
circular waveguide filled with ridges and the empty 
small waveguide which is operated below cutoff. This 
information is used with [15] to calculate the resonant 
lengths of the ridged waveguide resonators including 
the adjacent evanescent-mode sections. Only the input 
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and output discontinuities cannot be covered through 
the procedure in [15].  Therefore, the length between 
this discontinuity and the first ridged resonator is 
varied first in a one-dimensional optimization. A fine 
optimization of all filter section lengths completes the 
design. 

 
3. Results 
 

Several four-pole circular waveguide evanescent-
mode filters have been designed using this method. In 
all examples, the below-cutoff waveguide has a 
diameter of 13.0 mm so that its cutoff frequency is 
13.5 GHz. As input/output guides, standard circular 
waveguides WC94, WC109 or WC128 with cutoff 
frequencies of 7.4 GHz, 6.3 GHz and 5.4 GHz, 
respectively, are selected. 

Fig. 3 shows the performance of a double-ridged 
waveguide filter centered at 9.5 GHz. Note that the 
cross section is two-plane symmetric and, therefore, 
higher-order modes in the WC109 input/output 
guides appear at 13.16 GHz and 14.43 GHz due to 
that symmetry. However, the conversion to these 
two modes is below -60 dB up to 16 GHz and thus is 
sufficient in many practical applications. A 
comparison with the commercial software package 
CST Microwave Studio shows excellent agreement 
up to 12 GHz. Some discrepancy is observed for the 
region in which higher-order modes occur. Here 
CST appears to sum up the power carried by 
individual modes whereas MMT distinguishes 
between  them.  As for  a CPU-time comparison,  
the  

 
Figure 3. Performance of a four-pole evanescent-mode 
filter in double-ridged circular waveguide technology and 
comparison with results obtained from CST Microwave 
Studio. 
eigenvalue method combined with an MMT code 
outperforms CST depending on the number of 
frequency samples required. For 250, 500 and 1000 

frequency points, the eigenvalue method is faster 
than CST by a factor of more than 3, 6 and 10, 
respectively. 

The performance of a filter in circular T-septum 
waveguide technology centered at 9.0 GHz is shown 
in Fig. 4. Although the input/output guides (WC94) 
are smaller compared to those of the filter in Fig. 3, 
the single-plane symmetry of the cross section 
produces a different set of higher-order modes. 
However, their excitation is below -60 dB up to 
almost 15 GHz. 

 
Figure 4. Performance of a four-pole evanescent-mode 
filter in circular T-septum waveguide technology. 
 

 
Figure 5. Performance of a four-pole evanescent-mode 
filter in circular key-shaped ridged waveguide 
technology. 
 

A comparable filter in circular key-shaped ridged 
waveguide technology is depicted in the inset of Fig. 
5. This cross section emerged from a single circular 
T-septum configuration, in which the two arms of 
the T-bar have been extended to reduce the cross 
section’s cutoff frequency, until the ring was 
completed. It is interesting to note that the mode 

506



spectrum of the key-shaped cross section contains as 
a subset that of the small center circular waveguide. 
The performance of this filter (Fig. 5) is similar to 
that of Fig. 4 but the excitation of higher-order mode 
magnitudes is reduced, thus providing a better 
stopband behavior towards higher frequencies. 

The final example is an evanescent-mode filter in 
circular double-T-septum waveguide technology as 
shown in Fig. 6. The WC128 input/output guides are 
larger than in the previous examples because they 
need to facilitate proper propagation around the 
filter’s midband frequency of 7.2 GHz. Due to the 
double-plane cross-section symmetry, a higher-order 
mode set similar of that in Fig. 3 is excited, but 
individual contributions are at levels at or below -90 
dB up to 16 GHz. This is certainly the best filter 
performance of the examples shown here. 

 
Figure 6.  Performance of a four-pole evanescent-mode 
filter in circular double-T-septum waveguide technology. 
 

It is noted that a configuration similar to that of 
Fig. 6 was built and measured in rectangular double-
T-septum waveguide technology. The results and a 
direct comparison with this technique are reported in 
[16] and thus not repeated here. A direct comparison 
with a measured circular evanescent-mode filter 
similar to that of Fig. 3 is also shown in [16]. These 
filters exhibit measured in-band insertion losses of 
about 2 -3 dB which is what we would expect for 
the filter in Fig. 6 as well. 
 
4. Conclusions 
 

The new circular waveguide evanescent-mode 
filters with arbitrarily positioned ridges present a viable 
option for stand-alone circular waveguide bandpass 
filters. Compared to circular waveguide iris filters, they 
achieve component miniaturization and an extended 
stopband towards higher frequencies. The utilization of 

the new cross sections is facilitated by employing a 
classical eigenvalue mode-spectrum analysis which 
allows varying numbers of metallic inserts in the 
circular waveguide’s cross section to be considered at 
arbitrary locations. This provides an opportunity for 
new circular waveguide component designs. The 
double-T-septum filter with the best performance is 
expected to produce insertion losses of about 2.0-2.5 
dB due to its miniaturization compared to ordinary 
circular waveguide bandpass filters. 
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