sider optoelectronic switches made of semi-insulating GaAs with the following parameters: \(n \) (refractive index) = 3.6, \((\mu_e + \mu_h)\) (sum of electron and hole mobilities) = 2000 cm\(^2\)V\(^{-1}\)s\(^{-1}\), \(l \) (the gap between electrodes) = 3 \(\mu m \), \(h \nu \) (incident photon energy) = 1.5 eV and the conductance across the gap is \(G = 1 \times 10^{-2} \Omega^{-1} \). To switch the output of a polarisation-bistable laser within 1 ns, the current pulse needs to be 40 mA or 2 V across 50 Q. Such voltage can be delivered by the circuit with two optoelectronic switches connected in series shown in Fig. 2a, using 20 V DC bias and 2 pJ energy of the semiconductor laser pulse.

In conclusion, we have demonstrated the operation of a clocked optical S-R flip-flop based on polarisation-bistable semiconductor lasers with very simple circuitry. Other types of optical flip-flops can be constructed with similar schemes.

References

Fig. 1 Shunt-inductance coupled filters with increased-width resonators

c

SHUNT-INDUCTANCE-COUPLED WAVEGUIDE FILTERS WITH EXPANDED SECOND STOPBAND

Indexing terms: Filters, Microwave filters

A computer-aided design is described for inductive iris and inductive double-strip coupled filters with increased-width resonator sections. The theory includes both the higher-order-mode interaction of all discontinuities and the finite thickness of the irises and inserts. The step-wall discontinuity effect is included in the optimisation process as an additional design parameter. Design examples for midband frequencies of about 11 and 16 GHz are given; the corresponding stopband attenuation is higher than 50 dB, or 40 dB, up to 18 GHz, or 24 GHz, respectively.

Introduction: Common rectangular waveguide bandpass filters coupled by inductive irises or E-plane integrated metal strips,1–2 are composed of halfwave resonator sections equal in width to the feeding waveguide. Owing to the nonlinear relation between guide wavelength and frequency, however, for this type of filter, high attenuation requirements over a broad second stopband are often difficult to meet. To alleviate the problem, the cutoff frequency of the fundamental mode within the filter resonators may be suitably reduced by increasing the waveguide width in question. Moreover, the inductive junction effect of the step-wall discontinuity may be advantageously utilised as an additional design parameter for shunt-inductance coupled filters.

In this letter, therefore, inductive iris and inductive strip coupled resonator filters within an increased-width waveguide (Fig. 1) are investigated. As in References 3–5, the design of optimised filters is based on a rigorous field expansion technique into incident and scattered waves at all discontinuities. This allows direct inclusion of higher-order mode coupling, finite strip thickness and the step-wall discontinuity effects in the optimisation process.

Theory and design: The electromagnetic fields of each subregion at the corresponding discontinuities are derived from the x-component of the magnetic Hertzian vector,\(^3\)–\(^5\) which is assumed to be a sum of the eigenmodes satisfying the wave equation and the boundary conditions at the metallic surfaces:

\[
\Pi_{hs} = \sum_{m=1}^{M} A^2_m T_m \sin \left[\frac{m x}{f} \right] e^{i k x n}, \quad (1)
\]

where \(M \) is the number of eigenmodes considered, \(T_m \) is the normalisation factor so that the power carried by a given wave is 1 W for a wave amplitude of \(1/\sqrt{W} \), \(p \) is the cross-section dimension (cf. References 3–5). This yields the scattering matrix at the step discontinuity considered. The scattering matrix of the total filter is then calculated by directly combining the single scattering matrices, as in Reference 3. This procedure preserves numerical accuracy, since the direct combination of scattering matrix parameters contains exponential functions with only negative argument.

The computer-aided design is carried out by an optimising program\(^5\) applying the evolution strategy method which varies the input parameters until the desired values of the insertion loss and of the stopband attenuation, for given band- widths, are obtained. For additional given input and output waveguide housing dimensions \(a, b \), thicknesses \(t \) of the irises or metal strips, respectively, spacing \(s \) of the double insert and number of resonators, the parameters to be optimised are the iris apertures \(d_i \) or lengths \(l_i \) of the double insert strips, respectively, the lengths \(l_m \) of the resonators, width \(a \) of the increased width section, and distance \(d \) to the step discontinuity (for the double metal insert filter). For computer optimisation, the expansion into 15 eigenmodes at each discontinuity has turned out to be sufficient. The final design data are checked up by 35 eigenmodes.

Results: A five resonator Ku-band filter is chosen for the design example for the inductive irises coupled filter type (Fig. 1a). For comparison, Fig. 2 shows the calculated insertion loss \(1/|S_{21}| \) in decibels for the usual iris filter (broken line), for the iris filter within a reduced-width waveguide (dash-dotted line), and for the iris filter within an increased-width waveguide (solid line). The curves demonstrate the better stopband attenuation behaviour of the increased-width filter.
For the inductive strip coupled filter type, the double insert is preferred (Fig. 1b), which, compared with its single insert counterpart, has the advantage that the distance between the strips and the waveguide sidewalls may be suitably chosen to maintain the evanescent field character along the strips over a

Continuity may be utilised as an additional design parameter to be optimised. Since the computer-aided design is based on the frequency spacing between the first and the second passband, it is evident.

Fig. 2 Insertion loss for an iris-type filter (Fig. 1a) with five resonators a = 15-789 mm, b = 7-899 mm; iris thickness t = 0-19 mm

--- resonator section width a' = a, filter data (cf. Fig. 1a): d1 = d8 = 7-112 mm, d2 = d3 = 5-310 mm, d3 = d4 = 4-798 mm, lR1 = lR2 = 9-357 mm, lR2 = lR4 = 10-119 mm, lR3 = 10-262 mm reduced-width resonator section a' = 12-638 mm, d1 = d8 = 7-712 mm, d2 = d3 = 6-022 mm, d3 = d4 = 5-440 mm, lR1 = lR2 = 10-361 mm, lR2 = lR4 = 11-493 mm, lR3 = 11-892 mm

--- increased-width resonator section a' = 20-538 mm, d1 = d8 = 7-388 mm, d2 = d3 = 5-266 mm, d3 = d4 = 4-634 mm, lR1 = lR2 = 8-491 mm, lR2 = lR4 = 9-377 mm, lR3 = 8-49 mm

Fig. 3 Insertion loss for a double-insert-type filter (Fig. 1b) with three resonators a = 15-799 mm, b = 7-899 mm

--- resonator section width a' = a, single-insert type, insert thickness t = 0-19 mm, filter data (cf. Fig. 1b): l1 = l4 = 0-03 mm, l2 = l3 = 4-596 mm, lR1 = lR2 = 19-201 mm, lR2 = 21-534 mm double-insert type, a = a' = a, double-insert type, t = 0-19 mm, s = 5-0 mm, l1 = l2 = 0-02 mm, l2 = l3 = 1-656 mm, lR1 = lR2 = 19-996 mm, lR2 = 22-832 mm reduced-width resonator section a' = 25-2 mm, double-insert type, t = 3 mm, s = 4-2 mm, d = 14-48 mm, l1 = l2 = 1-279 mm, l2 = l3 = 9-356 mm, lR1 = lR2 = 14-516 mm, lR2 = lR4 = 14-355 mm

Wide frequency band. Fig. 3 shows the calculated insertion loss for a three-resonator single metal insert filter (broken line), a double metal insert filter (dash-dotted line), and for a double metal insert filter within an increased-width waveguide (solid line). The advantage of the increased-width filter type is evident.

Conclusion: Improvement of the stopband behaviour of shunt inductance coupled waveguide filters is possible by increasing the waveguide width within the resonator sections. The reduction of the cutoff frequency of the resonators increases the frequency spacing between the first and the second passband. Moreover, the inductive junction effect of the step discontinuity may be utilised as an additional design parameter to be optimised. Since the computer-aided design is based on field expansion into eigenmodes, higher-order mode coupling effects at all discontinuities and the finite thickness of the metal wires, and inserts, respectively, are taken into account. Examples for iris and double insert coupled resonator filters with an increased-width waveguide section demonstrate the excellent stopband behaviour of this class of filters.

F. ARNDT
J. BORNEMANN
C. PIONTEK
H. SCHULER
Microwave Department
University of Bremen
Kufsteiner Str., NW 1, D-2800 Bremen 33, W. Germany

References

20 GHz ACTIVE MODE-LOCKING OF A 1-55 mm InGaAsP LASER

Indexing terms: Lasers and laser applications, Semiconductor lasers

Active mode-locking of a 1-55 mm wavelength InGaAsP laser at repetition rates up to 20 GHz is reported. The pulsewidth is 5 ps at 20 GHz, with a peak pulse power of 18 mW coupled into a single-mode output fibre.

Short-duration mode-locked optical pulses at multigigahertz repetition rates will find application in future communication and signal-processing systems. The highest mode-locked repetition rates reported to date have been 10 GHz InGaAsP lasers at 1.3 μm wavelength and 18 GHz in AlGaAs lasers. The main limitations on the maximum observed repetition rate in Reference 1 were the relatively large pulsewidth (30 ps) and the finite bandwidth of the photodetector and associated instrumentation. We recently demonstrated an increase in pulsewidth (to 5 ps) using an actively mode-locked 1-55 μm InGaAsP laser in a new single-mode-fibre composite-cavity resonator structure. The present letter reports mode-locking in this structure at repetition rates up to 20 GHz. This is the highest repetition rate so far reported in a mode-locked semiconductor laser.

The InGaAsP laser-fibre composite cavity is illustrated in Fig. 1. It uses a 1.55 mm three-channel buried-crescent (TCBC) laser with low parasitic capacitance and high modulation bandwidth. One facet of the laser chip is coated with a high-reflectivity (R _1 > 0.9) multilayer dielectric mirror. The other facet is coated with a single-layer antireflection (AR) coating with a residual reflectivity of R _2 < 2 x 10^-4. The AR-coated facet is optically coupled to a 5 cm single-mode-fibre resonator with a microlens at one end. The other end of the resonator is coated with a partially reflecting multilayer dielectric mirror with a reflectivity of R _3 = 0.6. The output from the composite cavity is coupled through this mirror into a second single-mode fibre, which is terminated at a biconical output connector. The laser chip is mounted in a broadband 50 Ω microwave test fixture, and the DC and RF components of the drive signal are combined in a bias tee.

In our first series of experiments using this structure, we observed...