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A Modified Mode-Matching Technique and
Its Application to a Class of Quasi-Planar

Transmission Lines

RUEDIGER VAHLDIECK, MEMBER IEEE, AND JENS BORNEMANN

Abstract —A rigorous and versatile hybrid-mode analysis is presented to

determine the normalized propagation constants in a class of qnasi-planar

transmission-line structures.

The method is accurate and covers the finite metaflization thickness,

mounting grooves, and an arbkrary number of dielectric subregions.

Utilizing a modified mode-matching technique, one can derive dkcon-

tinuity and transmission-line matrices for each homogeneous subregion.

Successively multiplying matrix equations of all subregions leads to the

cbsmacteristic matrix system. This procedure makes it possible to create a

modularized computer program which can be conveniently extended to a

wide spectrum of conceivable configurations simply by inserting the matrix

eqnations of additional subregions in the multiplication process. To demon-

strate the efficiency of the proposed method, dispersion characteristics of

dominant and next higher order hybrid modes in earthed and insulated

finlines, suspended microstrips, and coupled striplines with tuning septa,

are given as examples.

I. INTRODUCTION

E -PLANE MILLIMETER-WAVE integrated circuits are

of considerable interest in systems requiring single-

mode broad-band operation. Earthed and insulated finlines,

coupled strip- and coplanar lines are the most common

structures which have been successfully applied, for exam-

ple, in the design of broad-band directional couplers, taper

sections, and filters. Their propagation characteristics have

been obtained by various methods. An early paper by

Meier [1] describes the dominant mode in an earthed

finline as a variation of the corresponding mode in a ridged

waveguide, but test measurements are still necessary to

determine the equivalent dielectric constant of the config-

uration. In order to avoid these time-consuming and ex-

pensive measurements, several theoretical methods have

been proposed to evaluate the dispersion characteristics of

the dominant and sometimes even higher order modes in

an earthed finline or more complicated configurations like

coupled strip or coplanar lines.

The two-dimensional trarismission-line matrix (TLM) has

been applied by Shih and Hoefer [2] to determine the

dominant and second-order mode cutoff frequencies in a

unilateral, bilateral, and so-called insulated firdine. More

complicated structures have been analyzed by using the

Manuscript received February 5, 1985; revised May 31, 1985.
R. Vahldieck is with the Department of Electrical Engineering, Univer-

sity of Ottawa, 770 King Edward Ave., Ottawa, Ontario KIN 6N5,

Canada.
J. Bornemann is with the Microwave Department, University of Bre-

men, D-2800 Bremen 33, Kufsteiner Str., NW1, West Germany,

numerically very efficient spectral-domain method (SDM)

(Itoh and Schmidt [3]-[5]), but only results with zero

metallization thickness and neglected mounting grooves

have been published.

More recently, two different mathematical treatments

have been presented which take into account the finite

metallization thickness (Kitazawa and Mittra [13]) and,

additionally, the mounting grooves (Vahldieck [6] and

Bornemann [7]). In [13], a hybrid-mode formulation has

been proposed in which Green’s functions are derived

using conventional circuit theory. Results are given for

unilateral and bilateral finlines.

Vahldieck [6] and Bornemann [7] extended a modified

mode-matching technique which utilizes a transverse reso-

nance relation [8], [14] to reduce the number of required

eigenvalue equations. This method, which includes both

the finite metallization thickness and the mounting grooves,

has been applied successfully to a generalized finline con-

figuration with more than one dielectric subregion and

different fin thicknesses [6]. In [7], structures containing

both a strip and a slot were treated, and results were

presented for coupled slotlines and suspended microstrips.

This already indicates that the method is quite general and

can be extended very easily to more complicated combina-

tions of strip- and slotlines.

For the numerical computation of the propagation con-

stants, it is an advantage of this method that the order of

the characteristic matrix equation is only 2NH – 1 (where

NH is the number of orthogonal eigenfunctions considered

in each subregion) and remains constant even for an in-

creasing number of transverse discontinuities. This is in

contrast, for example, to the well-known mode-matching

procedure used by Siegl [11] and Beyer [12] in which the

size of the characteristic matrix equation usually increases

with the number of subregions. Moreover, in the latter

method, all boundary conditions are satisfied before the

tangential E- and H-fields at each interface are matched.

This leads to an inflexible procedure and makes it normally

necessary to create a new computer program when investi-

gating different configurations with additional subregions.

However, the modified mode-matching technique com-

bined with a transverse resonance relation avoids this

disadvantage. Initially, the boundary conditions at the

waveguide sidewalls (.x = O and x = a, Fig. l(a)–(c)) are

neglected. The configuration can then be regarded as a
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parallel-plate line subdivided into homogeneous cross sec-

tions (Fig. l(d)) in which partial wave amplitudes are

defined, traveling in positive and negative x-directions with

the still unknown propagation constant kx. After the

elimination of the field coefficients in each subregion, a

transverse transmission-line matrix results which relates the

amplitudes at the lower (x = XU) and the upper boundary

(x= XO, cf., Fig. l(d)) of a subregion. Satisfying a modified

field-matching condition at the common interfaces (e.g., ~,

Fig. l(d)) transforms the partial wave amplitudes of cross-

section i into those of cross-section i +1. Successively

multiplying each transformation matrix with the ap-

propriate transmission-line matrix of the corresponding

subregion, a relation only between the partial wave ampli-

tudes at the lower (x = O) and upper (x = a) boundary of

the waveguide is obtained. Finally, the inhomogeneous

waveguide cross section can be regarded as a line resonator

in which the resonance condition is satisfied by inserting

the up-to-now neglected boundary conditions at the metallic

sidewalls (x = O and x = a). This procedure reduces the

size of the characteristic matrix equation to a quarter of the
original size. Furthermore, it makes the method very flexi-

ble because an arbitrary number of subregions can be

inserted easily in the matrix system simply by multiplying

the additional transformation and transmission-line

matrices with the previous.

The aim of this paper is to demonstrate the potential of

this versatile and accurate treatment. As examples, eartlhed

and insulated finlines will be analyzed, as well as coupled

strip- and coupled slotlines. Finally, some detailed results

on the effect of finite metallization thickness and mounting

grooves on the dispersion characteristics of quasi-TEM,

and next higher order hybrid modes will be presented.

II. THEORY

Since the theoretical treatment has been described re-

cently by Vahldieck [6] and Bornemann [7], only the princi-

ple steps will be explained. For further information, the

reader is referred to [6] and [7].

It is well known that quasi-planar transmission lines

support hybrid modes in which all six field components

can occur. The transversely inhomogeneous configuration

is divided into homogeneous subregions. In each of these

subregions, the hybrid fields

~’=VXVXA7.–jcopVXA7. (1)

can be expressed by a superposition of the axial z-cornp~-

nents ~f two independent Hertzian vector potentials Am

and A ~. The potential functions are a sum of suitable

orthogonal eigenfunctions

which satisfy the boundary condition at the metallic surface

and obeys the scalar Hehnholtz equation. Initially, how-

ever, we neglect the boundary conditions at the waveguide

sidewalls (x = O and x = a, cf., Fig. 1) and regard each

subregion as a part of a parallel-plate line in which partial

wave amplitudes I; and U: are defined and travel in

positive and negative x-directions. This procedure resnlts

in a somewhat higher theoretical effort, but is necessary in

order to reduce the size of the characteristic matrix equa-

tion. Finally, it makes it easy to implement any desired

number of subregions in the formulation. The functions ~C

and ~, in (3) and (4) (given in the Appendix) implicitly

satisfy the y-dependent boundary conditions in their re-

spective subregions. I; and U,’, as well as their derivatives

combined as vectors U’ and Ii at the upper boundary

(.x = XO) of each subregion, can be determined from the

amplitudes at the lower boundary (x= XU), see Fig. l(d).

Therefore, a generalized transmission-line matrix R’ can be
found which relates ~; and 1‘ at the two coordinates as

follows:

[21=[;;] El
X=xo — X=xo

R’

(5)
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i?A;z@!&+ Kj(@, kz)~
~5 ax
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Fig. 2. Representative transition T4 and T3 for the configurations in
Fig. 1. (a) Slot transition with only one slot. (b) Slot transition with

three slots.

R:, R;, and R;, are diagonal matrices containing sine and

cosine functions. They are explained in the Appendix.

Before a final relation between the amplitude vectors at the

upper (x = a) and the lower (x = O) sidewall of the wave-

guide can be given, it is necessary to modify the continuity

equations at each transverse discontinuity, such that the

amplitude vectors of subregion i +1, for example, are

determined by those of region i.

The following mathematical derivation of this principle

step is based on the representative transition T4 in Fig. 2.

In the first case of Fig. 2(a), the continuity condition can

be written as follows:

E;, z = E4y,z
(6]

E;, Z = O, bl<y<bs, b4<y<bZ (6a)

H: Z=H4 b3Gy<b4y,z?
(’7)

and in the second case of Fig. 2(b) in plane T4

H:,, =H;,,, b7<y<bg, b3<y<b4, bs<y<b2

(v=4a,4b,4c). (9)

In order to determine the partial wave amplitudes of

subregion i = 5 (Fig. 2(a)) from their corresponding ampli-

tudes in the adjacent area i =4, we first modify (6) and (7)

K;(u, kz)=~(l– K4(u, kz))

K~(u, kz)=~(l– K4(U, kz))
Uc

and similarly for (8) and (9)

E.v :
8A;,

q
8AV
~–q(u,kz)~

8X=V ax 1
(14)

Ez : A~z=~K’(u, kz)A;, (15)
v

Hz: ~“(ti, kz)A;z=A;z (16)

(17)

with

F:(u,kz)= :(l– E”(u,k z))

K;(ti, kz)=~(l-K”(~, kz)).

For the interface T3 (Fig. 2(a)), replace in (10)-(13) the

index i = 5 with i = 4, and index i = 4 with i = 3. To

obtain the interface expression for T3 in Fig. 2(b), replace
in (14)–(17) i = 5 with i = 3. The discontinuities T4, T3 in

Fig. l(b) are then also included in (14)–(17). Moreover, the

equation system (10)–(17) is very instructive. It shows that

the coupling between TE and TM waves is automatically

included, and that only in structures with homogeneously

filled cross sections (e.g., ridged waveguide) or in inhomo-

geneously filled structures at cutoff ( kz = O) are these wave

types decoupled since Kp (LO,kz) and Kc (u, kz) in (10)

and (13) vanish as well as Kp (u, kz) and Kc (a, kz) in

(14) and (17).

Multiplication of the above equation system with ap-

propriate orthogonal eigenfunctions [6], [7] separates the
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[1.Im5=Im4c

Ie4”
. (21)

Ie 5
X=T4 Ie4b

Ie4C
X=T4

In the above equation system, F= and F, denote the

coupling matrices. Combining vectors U= and ‘Um into U as

well as 1~ and Z= into 1 finally yields the transformation

matrix for the discontinuity T4 in Fig. 2(a)

[Y1=[IEJX”KI ’22’
X=T4

V4
X=T4

or more generally

Isolating the left-hand side amplitude vector 15 in (21) by

multiplying with the inverse of matrix Vs H yields a similar

transformation matrix at the interface T4 in Fig. 2(b).

[1[
U5 = VSE o

1[ 1. U4”’”C

15 0 (vs~)-’ ~&,b,c o

(23)

X=T4
Vs4

X=T4

Now, by successively multiplying the transmission-line

matrix (5) of each subregion with the corresponding trans-

formation matrix finally leads to the desired relation be-

tween amplitude vectors at the upper and lower waveguide

sidewalls in the example of Fig. l(c)

[1.
;: = [R5.VS4.R4”bc.v~3.R3.v2.~2.vI.~1 . U1

H 111 “
X=a G X=o

(24)

Inserting V4. R4. V3 instead of Vs 4. R“. VS3 in (24) yields

the matrix equation for the structure in Fig. l(a), and (24)

then reads as follows:

[1U5
5

[1=R5 ~ vL@Rl fJ1

15 ,=1 11 “
(25)

X=a —x=()
G

The partial wave amplitudes are directly proportional to

the field components EY, , - U and H=, ~ -1, respectively.

Hence, it follows for the up-to-now neglected boundary

conditions (the transverse resonance condition) at the

waveguide sidewalls, that U = O (for x = a and x = O).

Thus, the characteristic matrix equation is the upper-right

quarter of the matrix product in both (25) and (24).

If NH is the number of summation terms in (3) and (4),

G12 is of order 2NH – 1 and remains constant even for an

increasing number of discontinuities. The zeros of its de-

terminant provide the desired propagation constants

det(Gl, (w, kz)) = O. (27)

It has thus been demonstrated that this method can

handle. generalized quasi-planar transmission-line config-

urations in which strips and slots are located arbitrarily in

the waveguide; more than one dielectric subregion and

different strip thicknesses in the same structure can be

considered, as well as the finite depth of the mounting

grooves.

In many practical cases, however, symmetry conditions

can be included in the formulation process which make this

general treatment as efficient as specialized procedures. If

we consider, for example, a symmetrical bilateral finline

with a symmetry plane at x = T3 (Fig. l(a)), (25) can be

written as follows:

[1U3 [1=R3 fi vi. R, U1

13 ~=4 11 “
(28)

X=T3 X=o

Thus, only three subregions (i= 1,2, 3) have to be in-

cluded in the entire multiplication procedure, which makes

the numerical analysis more efficient. For a magnetic wall

at x = T3, the new boundary condition can now be satis-

fied by setting 13= O, and the corresponding resonant

condition changes the characteristic matrix equation from

the upper-right quarter in (25) to the lower right in (28)

0= G22011. (29)

For an electric wall at x = T3, however, the resonance

condition is still the same as in the general case, and the

characteristic matrix equation is again Glq in (28). Both

submatriges ( G22 and G12) can be solved independently

and provide the propagation constants of all hybrid modes

in symmetrical bilateral finlines. Other symmetry condi-

tions may be implemented very easily so that solutions

of a large spectrum of conceivable quasi:planar transmis-

sion-line configurations m-e available with only one general

computer program.

For the numerical procedure, the infinite sum in (3) and

(4) must be truncated after a certain number of terms. To
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Fig. 3. Dispersion characteristic of an asymmetrical bilateral finline.
a = 7.112 mm, h = a/2; s = 2.2606 mm, HI =1.201 mm, S1 = 2.5 mm,

H2 = 2.156 mm, S2 =1.5 mm, e = 0.7 mm; d = 254.0 pm, c,= 9.6,
r = 70.0 pm.

achieve a 0.5-percent accuracy in the propagation constant

and to. overcome a relative convergence effect which usu-

ally occurs between 11 –15 terms, a minimum of 17 and a

maximum of 25 summation terms have been found to be

sufficient for most configurations investigated. The amount

of CPU time required to evaluate the propagation constant

at one frequency sample is between 1–3 tin on a VAX

11/750, but only a few seconds on a main-frame computer

like a Siemens 7880. A higher accuracy is attainable by

increasing the number of summation terms, but at the

expense of increased CPU time.

The behavior of some dispersion curves presented below

has been verified by increasing the truncation index NH to

30 to exclude numerical inaccuracies. Furthermore, all

dispersion curves are labeled at cutoff. That implies that

their notation beyond the cutoff frequencies remains the

same even when some curves cross each other.

III. RESULTS

First of all, the potential of the present method is

demonstrated by calculating quasi-planar configurations

arbitrarily located in the waveguide mount. Fig. 3 shows

the dispersion behavior of a bilateral finline with a slot

offset, asymmetric location, finite metallization thickness,

and mounting grooves. All higher order hybrid modes are

excited by an incident HIO wave, and it is a remarkable

result that the HEZ mode crosses the HEI mode resulting

in a higher propagation constant than the intrinsic domi-

nant mode for frequencies beyond 20 GHz. This is due to

two causes. Firstly, both modes are strongly affected by the

mounting grooves; secondly, the insert is stepped away

from the center of the waveguide (towards the higher field

concentration of the H ~0 mode of the empty waveguide).

In an asymmetrically suspended microstrip combined

with a bilateral finline, this curious dispersion behavior is

even more pronounced (Fig. 4). It is obvious that there

exists an interaction between the hybrid eigenmodes resr.dt-

ing, for example, in nontypical dispersion curve of the EH o

,
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,3 e., h

I I Mk7!M!!

.- ,—
G

- [

HE2

/

‘HE5

1

‘E ~~

/

HE5
HE7

HE4 HE8

EH2

“.

o 40 30 50

FIGHz —

Fig. 4. Dispersion characteristic of a coupled slotline. a = 7.112 mm,
h = a/2; s =1.778 mm, S1 = 2.2225 mm, HI =1.1557 mm, W1 =

0.592 mm, S2 = S3 = 0.592 mm, H2 =1.3038 mm; d = 711.2 pm, c,=
10.0, t = 71.0 ym.

I A’L I

I0.5

.1T
0,

J

-]0,5

.jl.oo

Fig. 5. Dispersion characteristic of a coupled slotline, centered in the
waveguide. a = 7.112 mm, h = a/2; s = 3.556 mm, S1 = 1.778 mm,
W1 = 0.7112 m’m, S2 = S3 = 0.7112 mm; d = 254. pm, C, = 2.22, t=
17.5 ~m.

and HEI mode. However, this is no longer so when a still

asymmetric transmission line is centered in the waveguide

(Fig. 5).

Fig. 6 shows the dispersion of both quasi-TEM and first

higher order hybrid modes in a shielded coupled stripline

combined with a tuning septum. All strips and slots are

arbitrarily located on the substrate. As shown in [3] and [5],

the different phase velocities of both quasi-TEM modes

can be equalized by tuning the slot on the opposite side of

the strips (Fig. 7) which is a prior condition for the design

of broad-band contradirectional couplers with high direc-

tivity. We have compared our results on the influence of

slot width on the quasi-TEM-propagation constant with

data given by Sc@idt [5]. Agreement is very good, as
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Fig. 6. Dispersion characteristic of a suspended coupled stripline
centered in the waveguide but with arbitrarily located strips and slots.
a = 3.1 mm, h = a/2: s= a/2, s1=O.8 mm, S2 = 0.4 mm, S3 = 0.2
mm, S4 = 0,5 mm, W1 = 0.15 mm, W2 = 0.3 mm, H1 =1. mm, H2 = 0.5

mm; d =110. pm, c, = 3.75, t =10. pm.

EHobddl w
v

EHo[even]

T

1

28 48 I
— F/GHZ

Fig. 7. Dispersion characteristic of a suspended coupled stripline com-
pared with data given by [5]. a = 7.112 mm, h = a/2; s = a~2, S1 = 0.2

mm, S2 = S4 = 1.378 mm, S3 = 0.4 mm, W1 = W2 = 0.2 mm, d = 254.

pm, c,=2.2, t=5. pm; e= O(—), e=O.7 mm (-----).

shown in Fig. 8. Moreover, Fig. 7 shows the dispersion

characteristics of the configuration investigated in Fig. 8.

Differences in the propagation constant are less than 2

percent. The optimal slot width which equalizes both

quasi-TEM modes was measured in [9] and is given in Fig.

9. While theoretical values published in [10] show only a

poor agreement with these experimental results, our data

agree relatively well.

Considering a symmetry plane with an electric or mag-

netic wall at discontinuity, T3 in Fig. l(a) yields a so-called

insulated finline [2], [6] (both fins are connected with the

waveguide mount). For the same symmetry plane in Fig.

l(b), a single-side insulated finline is obtained in which

only one fin is not connected with the waveguide mount,

and Fig. l(c) provides a dual-side insulated finline. The last

two types of transmission lines play an important role

when active components are used and one or both fins

have to be insulated by a gasket to allow a dc voltage to be

developed across the fins. The bias is introduced at the

mounting grooves. To simplify the numerical procedure for

determining the fundamental mode in these structures, the

depth of the grooves is assumed to be a quarter wavelength

1.5

m

EHofeven]
X-IS]

k
ko

EHJoddl
1. 0-[5]

t ‘E’ SLOT MOOE

‘ I ‘-’s’ I
F=33 GHz

rl,5-

Fig. 8. Two coupled strips tuned by a slot on the opposite side of the
dielectric. Dimensions Identical to Fig. 7; ~= 33 GHz; e = O.

5-

4-

%(*)

(m:)

2-

1-

,fl
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after [to]

A

H

L-!
-s, - ;

T _h—

~
234

f/GHz —

Fig. 9. Optimal slot width S1 (opt. in mm) of the tuning septum versus
the frequency. a = 7.27 mm, h = 25. mm; s = a/2, WI= W2 = 2.2 mm,

S2 =s4 = 9.9 mm, S3 = 0.8 mm; d=l.27 mm, c, =9.6, t=17.5 pm.
measured [9], evaluated [10], — this method.

at operating frequency and regarded as a choke section by

which the RF continuity between the fins and the wave-

guide wall is achieved. Hence, the configuration has been

investigated as an earthed finline. For practical applica-

tion, however, these configurations support quasi-TEM

modes, which can be seen in the following figures.

Fig. 10 presents the dispersion characteristics of a so-

called insulated firdine. A comparison with the configura-

tion in Fig. 11, where only one fin is insulated, reveals the

difference, which is essentially the occurence of the quasi-

TEM mode (EHO). In both cases, the HEI mode has

almost the same cutoff frequency and is obviously not

affected by the insulation of one fin. The insulation of both

fins (Fig. 12) does not change the cutoff frequency of the

HEI mode either, but a second quasi-TEM mode occurs as

expected. Combining the single insulated with an earthed

bilateral finline (Fig. 13) increases the propagation con-

stant of EHO and decreases the cutoff frequencies of the

higher order modes HE2 –HEd. This tendency is also ob-

served for the dual insulated finline in Fig. 14 and resem-

bles somewhat the higher order mode behavior in an
earthed bilateral finline [15]. Influences of the finite

metallization thickness on the HEI and quasi-TEM modes

are relatively small as can be seen from Fig. 15. A thicker

metallization leads to decreasing quasi-TEM- and HEl-

mode propagation constants. This corresponds with the

physical point of view that their electric fields are mainly

concentrated in the air-filled region between the strips,
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Fig. 10. Dispersion characteristic of a so-called insulated finline. a = 3.1

mm, h = a/2; s = a/2, S2 = 0.6 mm, e = 0.5 mm, t = 5. #m, d =110.
pm, c,= 3.75. Symmetry plane at .r = a/2: magnetic wi+l (—),
electric wall (----- ----).
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3.1 mm, h = a/2; s = a/2, e = 0.5 mm, c = S2 = 0.3 mm (cf. Fig. — F/GHz

l(b)), S3 = 0.6 mm; d = 110. pm, c,= 3.75, t =5. pm. Symmetry plane
at s = a/2: magnetic wall (—), electric wall (---- - -). Fig. 14. Dispersion behavior of a dual-side insulated finline combined

with a bilateral finline. Dimensions identical to Figs. 12 and 13.
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resulting in a lower propagation constant when increasing

the strip thickness.

Regarding the influence of the mounting grooves on the

electrical characteristics of quasi-planar transmission lines,

it was found out recently [6], [7] that higher order modes

are strongly affected, whereas the HE1 and the quasi-TEM

modes are virtually insensitive to a wide range of changes

in groove depth. In principle, this tendency is also observed

for the single and dual insulated finline, and is shown in

Figs. 16 and 17. For the single insulated configuration in

Fig. 16, however, a mutual influence of the slot mode

(HE1) and the second higher order mode (HE3) (which has

the same field symmetry as the incident HIO mode) occurs,

but was not observed for the dual-side insulated finline in

Fig. 17. ln that case (Fig. 17), both higher order modes

(HE,, HE,) are obtained by considering an electric wall as

the symmetry plane. It should be noted that, for operating

frequencies beyond 75 GHz, the critical groove depth

becomes shallower than given in Fig. 16, but can be

increased a few percent by using a smaller substrate thick-

ness.

IV. CONCLUSION

A versatile hybrid-mode analysis is presented taking into

account the finite metallization thickness and mounting

grooves in a class of various quasi-planar transmission

lines. Using a modified mode-matching technique comb-

ined with a generalized transmission-line matrix exhibits

the advantage of maintaining the size of the characteristic

matrix equation constant even for an increasing number of

discontinuities. Additionally, the method enables a user to

create a modularized computer program which can easily

be extended to a wide range of conceivable transmission-

line configurations.
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versus the moove

~epth e ~n a dual-side insulated !inline. Dimensions according ~ Fig.
12.

It is true that the method is not as fast as the spectral-

domain technique; however, it includes the effect of finite

metallization thickness and mounting grooves. Especially,

the applications of quasi-planar transmission lines in the

shorter millimeter-wave range have shown that the in-

fluence of the mounting grooves are more significant than

the effect of finite metallization thickness. For example, a

0.7-mm-deep groove in a Ku-band waveguide mount causes

a 2-GHz reduction of the cutoff frequency of the next

higher order mode (Fig. 7), whereas the same groove depth

reduces the next higher order mode in an E-band wave-

guide mount by at least 45 GHz (Fig. 16).

APPENDIX

Abbreviations for the partial wave amplitudes in (3) and

(4) are

Iefn) (x ) = C/n)eJkxtn)x + D(n)e-Jkxt.)x

The unknown coefficients A:n), B(n), C(n), and D;., are

eliminated by inserting the upper (x = xd ) and the lower

boundary (x= XU’) values in the above equations. Thus,

the generalized transmission-line matrix l?’ for each subre-
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gion contains the diagonal matrices

[

(cos kx~~)xa
Rcl = ‘) o

0 (cos kx:~)xa’ ) 1

[
– kx(.)sin(kx~ti) xai)

Rsi= I o

[

‘+X(.FO
R~l’= kx:n)

o

and the propagation constant

0. 1xa=xo —xu

– kx{~) sin(kx[~)xa’)

[3]

[4]

The functions $c~.)(y) and ~s;.)( y) in (3) and (4) are

determined by the boundary condition in the y-direction [5]

[6]

~0~ = Kronecker delta.
[7]

For example, ~~~) in Fig. 2(a) means
[8]

rw

The coupling integrals Fc’ and Fs’ in (20) can be written
L-,

as follows:
[10]

~C~fi~)=fl}C~.)( Y)~C~~,(Y)dY, ~~4a,4b,4c
yu”

[11]

with yu” = (b7, b3, b5) and yo’ = (b8, b4, b6).

For Fs”,

and %T in

925

replace ~c with ~s. The abbreviations for ~ [12]

(20) and (21) are

—v

FC = ~ “Fcv”D@(ky/.))

# = Fs”’. Diag(kY~.)).

[13]

[14]

Fs” means the transposed of matrix Fs”. [15]
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