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Abstract —The characteristic impedance of finlines with up to three

slots is calculated by a rigorous hybrid-mode analysis which includes the
finite metallization thickness and finite depth of the mounting grooves. The

transverse resonance principle utifiied reduces considerably the order of

the involved matrix eigenvalue problem. The propagation constants for the

fundamental HE ~ mode (and EHO mode at related structures), as well as

for the higher order modes (up to HE,), and the characteristic impedances
for the fundamental modes are computed as a function of freqnency for the

bilateral and unilateral fhdine, as well as for the unilateral finline with two

coupled slots, and an additional slot on the opposite side of the substrate

surface. The finite metaflization thickness and mounting groove depth

considered show significant influence on the behavior of the characteristic

impedance.

I. INTRODUCTION

F INLINES ARE OF increasing importance for milli-

meter-wave integrated circuits. Extended application

of such structures requires realistic design data including

suitably defined characteristic impedances. Although effec-

tive hybrid-mode formulations for analyzing many config-

urations have been presented in the past, e.g., [1]–[6], real

structure parameters, like finite metallization thickness and

finite depth of the longitudinal grooves for mounting the

substrate, have been taken into account only scarcely.

These parameters may considerably influence circuit be-

havior, especially for higher operating frequencies, as has

been demonstrated, more recently, for the propagation

constant of various types of finline configurations [7]–[9].

As for the characteristic impedance, the finite metallization

thickness has hitherto been taken into account only for

unilateral and bilateral finlines [10] utking the equivalent

circuit concept in the spectral domain [3], and for un-

ilateral finlines with grooves [7]. The decoupled TE–TM

formulation in [7] is considered, however, to yield only

approximate results.

In order to improve the flexibility of applying such

millimeter-wave components, in this paper, the hybrid-

mode transverse resonance method [11] is extended for

calculating the characteristic impedance of more complex

types of finlines (Fig. 1). As has already been shown with

shielded microstrip lines [11], dielectric waveguides [12],

and, more recently, with finlines, [8], [9], [13], the size of

the characteristic matrix equation resulting from the trans-

verse resonance condition is reduced considerably, e.g.,

compared with the usual mode-matching technique. More-
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over, by simply modifying only a few coupling and trans-

mission matrices, a variety of structures may be included.

The finite metallization and mounting groove problem is

taken into account in the theory. Comparison with avail-

able results in some special cases [2j, [4], [10] establishes the

accuracy of the numerical solutions.

H. THEORY

A. Eigenvalue Problem

Since the derivation of the characteristic matrix equation

of the finline structures in Fig. 1 has already been pre-

sented in [8] and [9], this part of the theory is given in only

abbreviated form. For details, the reader is referred to [8]

and [9].

The hybrid modes on the finline si,ructures in Fig. 1 a~

derive! from the z-components of the vector potentials Ah
and A,

E=vx A”hz+~vxvx A”.z

1
ti=v x’A+ez– —V xv xA”hz.

jup
(1)

Ah, and A== are assumed to be a sum of suitable eigen-

modes in each subregion

A;, ez= V:,, (X, y)e-~~=z (2)

where

~/z(x!.Y) = : Q/m(x) f.(Y)
~=o

Ve(x, y) = i Penn (3a)
~=o

with

COS( kvj )

‘n(y) = m

(3b)

g.(y)=sin(kyj), 8.. = Kronecker delta. (3c)

ky~ corresponds to the y-dependent boundary condition in

each subregion (v = I, H, III, IV, V, cf. Fig. l(a)) or (v ●

I, II, III, IVa, IVb, V, cf. Fig. l(b)), respectively, as follows:

k;yv= z q“
f“

(4)
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Fig. 1. Finline structures including finite-metallization thickness and

mounting groove depth. (a) Bilateral finline. (b) Finline with two cou-

pled slots and a slot on the opposite side of the substrate.

where ~ U and q” for Fig. l(a) are given by

f’=[b, b,- b,, b,- bo, b,- b,, b]

qv=[y, y–b,>Y–~o, Y–~3>Yl (5a)

and for Fig. l(b)

f“=[b, b2-bl, b,- bO, b,- b3, b,- b5, b]

q“=[y, y–bl, y–bo, y–bq, y–bs, y] (5b)

respectively.

The eigenfunctions Qk(x), P.(x) in (3) can advanta-

geously be regarded as representing waves traveling in the

+ x-direction, with the still unknown propagation con-

stants k;, in each subregion. The boundary conditions at

the upper (x:) and lower (x:) boundary at the partial

waveguides thus formed in the x-direction, successively

applied for the transversal field components

dQh dPe
Eya — = Ph, EzaP,, HzaQ~, Hyaz = Q,

dx
(6)

at each discontinuity, lead finally to the relation between

the wave amplitudes at x = O and x = a (Fig. 1)

HP:
D1

tween adjacent partial waveguides v, v + 1 in the x-direc-

tion. The related expressions for T and C are given in [8]

and [9] and are reproduced in the Appendix using the

present notation. Note that for replacing the finline struc-

ture of Fig. l(a) by Fig. l(b) only the transmission matrix

T lV and the coupling matrices CI1l’IV, CIV’V need to be

appropriately altered. A second advantage of this method

is that the matrix size of M in (7) is constant, even for an

increasing additional number of discontinuities, e.g., layered

dielectric or additional grooves, since all matching steps are

represented by coupling matrices in the matrix product of

(7). Moreover, appropriate electric- and magnetic-wall

symmetry conditions [8], [9] yield a further variety of, for

instance, coupled structures.

The electric-wall boundary condition at x = O and x = a

(Ez = E, = O, i.e., P== Pk = O, cf. (6) and (7)) leads to the

transverse resonance condition

(8)

where Allz is only the upper right quarter of the matrix M

in (7). This reduction of matrix size is a further advantage

of this method. The zeros of the determinant

det(M12) = O (9)

which is a transcendent function of

()

2

k:; = c:k; – ~ – kz
f“ z

(lo)

with

k;= U2poeo

provide the desired frequency-dependent propagation con-

stant k, for the hybrid modes.

The transverse resonance method applied in the form of

(7) and (8) requires an identical number of modes N (cf.

(3a)) in each subregion, i.e., for example, N= N1 = NII =

N 111= N 1“’ + N In = N v for the structure of Fig. l(b).
Therefore, a further reduction of the number of equations

is not possible by manipulating the system so that the

unknowns are the wave amplitudes in the slot region, as,

e.g., in [16].

B. Characteristic Impedance

To restrict the arbitrariness which is inherent to a certain

extent to definitions of characteristic impedances for hy-

= ‘f I.cI, I1. TII. cI1,III. TIII. cIII, rv. TIv. cIV,V. TV . ‘e

;; Q: “
(7)

M

The transmission matrices T v transform the amplitudes brid waveguiding structures [11], [14], [15], the utility for an
from the upper (x;) to the lower (x~) boundary in each appropriate lumped-circuit design [14] may be chosen as
subregion v, i.e., partial waveguide v. The coupling matrices the basic criterion. A definition based on the power P
C“”+ 1 match the amplitudes at each discontinuity be- transported along the finline is considered to promise such
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usefulness for design purposes. For the second sufficiently

lumped quantity necessary for the definition of the char-

acteristic impedance ZO, the slot voltage U. is chosen

[1]-[4], [14]

112

Zor=$% (11)

The slot voltage of the r th slot can be found directly by

integrating the corresponding slot field in the middle of the

slot r

( X;—x[

)U,=jj%;x=y, z=o dy (12)
Yi”

where x ~, xl, yU, yl are the upper and lower boundaries in

the x, y-directions, v = II, IV, (Fig. l(a)), or II, IVa, IVb,

(Fig. l(b)), respectively. Equations (11), and (12) imply

that for structures with several slots, different characteristic

impedances may be defined. In this paper we consider only

the slot with the minimum width (i.e., highest expected

field concentration); for symmetrical structures, only one

half is calculated utilizing electric-wall or magnetic-wall

symmetry, respectively.

For an efficient inclusion of the mutual coupling effects

of hybrid modes which may occur at firdines of complex

structure, [8], [9], instead of the power associated with the

r th slot [3]–[4], [14], the total average power P of the

finline [2], [10] is chosen for calculating the characteristic

impedance (11)

where F v is the area of the v th subregion. The total power

transported along the structure is considered to be suffi-

ciently localized, but, on the other side, to be a suitable

indication of a possible change in the field concentration

due to mutual coupling effects.

The transverse components of the electromagnetic field,

in each subregion, for the derivation of the related expres-

sions for power and slot voltage, are calculated by (l)-(3),

where Pen,Qh~ are given iteratively by

1
%-l(X=-K’)
~:-l(x=xi-l)
Q;-l(x= Xi-l)

~;-l(x =x:-l)
u

I’; (x=x;)

P;(x= x;)
=CI-l,l.T1

1

Q:(x= x;) “

= II, III, IV, V
Qj(x= x;)

(14)

The values for Q;(x = x:= a), Q:(x = x:= a) are calcu-

lated by solving the homogeneous matrix equation (8)

substituting the propagation constant k, given by (9) and

(10); note that P#(x = x:= a)= P~(x = x!= a) = O.

For the calculations, the expansion in 18 eigenmodes has

turned out to yield sufficient asymptotic behavior of the

curves presented in this paper. For the EHO-mode oper-

ation of the finline structures in Fig. l(b), a definition of

the characteristic impedance via strip current 1 and power

1.o-
kz

~

I
0.5”

0-

-j0.5-

f . 18CHZ

~Ho. ~“—

33CHZ

q-

d tdt
r

46 8 10 12—=

Fig. 2. Normalized propagation constant k,, /k. (k. = free-space wave-
number) as a function of the number iV of eigenmodes (cf. (3a)) in each

subregion, at different frequencies for a bilateral fmline with two

coupled slots on upper substrate side and one slot opposite: a = 2 b =

7.112 mm, d = 254 ~m, t=17.5 pm, w = b/5, S1= 3b/5, S2 = b/2,

e = 0.5 mm, e, = 2.22.

[4], [14] has also been applied, showing nearly identical

results but requiring an increased number of modes to be

considered (about 45).

III. RESULTS

Numerical aspects of the method are illustrated by the

normalized propagation constant kz /kO of the relatively

complicated finline structure of Fig. 2 (bilateral finline

with two coupled slots on the upper substrate surface and

one slot on opposite side). It may be stated that the

expansion in N =18 eigenmodes in each subregion yield

sufficient asymptotic behavior. Similar convergence behav-

ior was stated for other structures, other frequencies, and

for the calculation of the characteristic impedances by (11).

Low relative convergence phenomena have been observed

between about N =7. ..14.

For the bilateral finline, dispersion characteristics and

the characteristic impedance of the fundamental HEI mode

are shown in Fig. 3. The same dimensions as used by

Schmidt and Itoh [2] are chosen (dashed lines), with the

exception that a finite metallization thickness t= 5 ~m is

taken into account. Additionally, the effect of a finite

groove depth e = 0.35 mm is considered for the practically

important HE I and HET modes (solid line), which are

excited at symmetrical bilateral finline structures by a TEIO

wave incident on the corresponding empty waveguide, and

which define the actually relevant monomode range. The

influence of groove depth on the higher. order HE2 and

HE3 modes (not excited by an incident TEIO wave) has

already been discussed in [8].

The results in Fig. 3 are in good agreement with those

available in [2]. The slight deviations in propagation con-

stants and 20 values are due to the influence of the
finite-metallization thickness considered, which reduces

slightly the field concentration within the dielectric sub-

strate in favor of the field within the two slots. As may be
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Fig. 3. Normalized propagation constant k, /k. (k. = free-space wave-
number) and characteristic impedance ZO as a function of frequency for
the bilateraf finline. Metallization thickness: t = 5 pm. Groove depth:
~ = 0 . . . (dashed lines), e = 0.35 mm —(solid lines). Other parame-
ters: a = 2b = 7.112 mm, d =125 pm, s = 0.5 mm, c, = 3.75

stated by comparing the corresponding solid with the

dashed curves, the influence of the mounting groove depth

e on the HE I- and HE T-mode dispersion and characteristic

impedance behavior is negligible for the symmetric bi-

lateral finline, since relevant HE I- and HE7- field parame-

ters, e.g., the cutoff frequencies, are influenced only mod-

erately by the groove depth e [8].

Unilateral finline examples are presented in Figs. 4 and

5. The structure treated by Beyer [7] is calculated with our

method. The results (Fig. 4(a)) do not agree with those

available in [7]. In Fig. 4(b), the same dimensions as those

used by Kitazawa and Mittra [10] are chosen, with the

exception that a finite groove depth e = 0.2 mm (for t= 35

pm), and e = 0.4 mm (for t= 5 pm) is taken into account.

The results are in good agreement with those of [10]. The

slight deviation of 20 for t= 35 pm at higher frequencies is

due to the change in the field concentration caused by the

finite groove depth taken into account. The slightly higher

characteristic impedance values for t = 5 pm, compared

with t = O of [10], is attributable to the increase of the

electric field between the slots caused by the finite-metalli-

zation thickness considered. The severe influence of wave-

guide groove depth at unilateral finlines with the usual

substrate thicknesses is demonstrated in Fig. 5. Finite

groove depth (solid line) leads to decreasing higher order

mode cutoff frequencies which cause significant deviations

in propagation constant and characteristic impedance be-

havior. The fundamental HE1-mode characteristic imped-

ance ZO(HEI) decreases significantly for higher frequen-

cies. This effect is brought about by the higher order HE3

mode, which is propagative already at about 60 GHz and

causes an increasing field concentration within the dielec-

tric substrate (cf. the increase of the corresponding propa-

gation constant).

Similar behavior is observed for unilateral finlines with

two coupled slots as shown in Fig. 6. As long as the groove
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Fig. 4. Normalized propagation constant k, /kO and characteristic im-

pedance Z. as a function of frequency for the unilateral finline. (a)
Dimensions according to Beyer [7]: a = 2 b = 3.1 mm, d =50 pm,

t= 70 pm, s = 0.6 mm, e = 0.326 mm, c, = 3.0. (b) Dimensions accord-
ing to Kitazawa and Mittra [10], but with finite groove depth included

e= O.2mm

f=35~m )
---- (dashed lines)

e = 0.4 mm

t=5~m }
—(solid lines)

a = 2b = 4.7752 mm, dl = 2.2606 mm, d=127 pm, s = O.la, 6,= 3.8.

depth is neglected (Fig. 6(a)), the calculated dispersion and

characteristic impedance characteristics, for the two funda-

mental EHO and HEI modes on this structure excited by

an incident TEOl- and TEIO-waveguide wave, respectively,

agree well with investigations by Schmidt [4]. Considering

a finite groove depth (Fig. 6(b)), however, the monomode
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Fig. 6. Normalized propagation constant k, /k. and characteristic imp-
edance ZO as a function of frequency for the unilateral finline with two
coupled slots. Metallization thickness: t = 5 pm, a = 2 b = 3.1 mm,
d = 220 pm, w = 0.2 mm, s = 0.6 mm, C,= 3.75. —(solid line)
magnetic-wall field symmetry at y = b\2. ---- (dashed line) electric-wall
field symmetry at y = b/2. (a) Groove depth e = O. (b) Groove depth
e = 0.5 mm.
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Fig. 7. Normalized propagation constant kz /k. and characteristic im-

pedance Z. as a function of frequency for the finline with two coupled

slots and a slot on opposite substrate side. Metallization thickness: t = 5
pm. Groove depth: e = 0.5 mm. Other parameters: a = 2b = 3.1 mm,

d= 220 pm, w = 0.2 mm, q = 0.7 mm, S2=0.9 mm, c,= 3.75.
—(solid lines) magnetic-wall field symmetry at y = b/2. --- -(dashed

line) electric-wall field symmetry at y = b/2.

application ranges of both the EHO and HE I fundamental

modes are reduced by the higher order HE2 and HE3

modes, respectively. The characteristic impedance ZO(EHO )

of the EHO mode is higher because the finite groove depth

assists the progress of an odd EY field within the slots; the

growing field concentration within the dielectric caused by

the HE2 mode at higher frequencies, however, compensates

this effect.

A slot on the opposite substrate surface (Fig. 7) increases

the mutual higher order mode coupling effects caused by

the finite groove depth, significantly. At about 50 GHz,

and especially at about 70 GHz, an abrupt increasing field

concentration within the dielectric substrate, initiated by

the finite groove depth, distorts both dispersion and char-

acteristic impedance behavior at these frequencies.

The theory given in this paper may be verified experi-

mentally by the investigation of a structure similar to Fig.

7 but with two coupled strips, instead of the slots, on the

upper side of the substrate. Suitable choice of the slot

width S2 on the lower substrate surface equalizes the

velocities of the even and odd quasi-TEM modes [4] and so

improves the directivity of related contra-directional cou-
plers. The optimum slot width S20P, was calculated [17]

using the transverse resonance technique, and the results

agree well with measured data published in [18].

IV. CONCLUSION

The rigorous hybrid-mode analysis described for calcu-

lating the characteristic impedance of finlines takes the

finite-metallization thickness and finite depth of the sub-

strate mounting grooves into account. The numerical ex-

amples given for the bilateral and unilateral finline, as well

as for the unilateral finline with two coupled slots, and an

additional slot on the opposite side of the substrate surface,

demonstrate that the inclusion of these real structure



90 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MT”r-34, NO. 1, JANUARY 1986

parameters may be important for finline designs, especially

for higher operating frequencies. Besides the considerable

reduction of the matrix size of the involved eigenvalue

problem, the transverse resonance method utilized has the

advantage that the characteristic impedance of a great

variety of relatively complex finline structures may be

calculated by merely modifying appropriate coupling and

transmission matrices, and by including suitable electric-

and magnetic-wall symmetry, within the corresponding

matrix equation. Comparison with available results for

some special examples of the spectral-domain method, for

zero groove depth, as well as for zero and finite-metalliza-

tion thickness, shows good agreement.

APPENDIX

Transmission Matrices Tv in (7)

Finline Type in Fig. l(a):

K

~,” O TC; O

orT.= o T:
T,v OT; O’

O T: O T:

Finline Type in Fig. l(a):

v= I, II,. o. ,V (Al)

~JcI,II o

0 ~JI,II
~1,11 = b’

bz – bl
o o—

2

1 0 0

with

T;=diag {cos(k;~dV)}

T:=diag {–kJ~. sin(k;. dv)}

~ = diag
{

~sin(k~ndv)
xn )

(A2)

where d“ =x! – x;, and diag is a diagonal matrix.

Finline Type in Fig. l(b):
Merely T~v, T~v, and T$lV in T Iv of (Al) and (A2) need

to be replaced by the corresponding submatrices

!)
T:v, ()

o

T:m etc.

of identical rank, with k~~’ and k~~, respectively.

Coupling matrices C ““+1 in (7)

o 0

0 0

(LLn)ty
o

0 ~[(m’’l-’

with the coupling integrals

-Kf=/%’(y)ff(W!y
by

and where tr means transposed.

(A3)

(A4)

For J,, replace f., ~(y) by g~, ~( y) (cf. (3b) and (3c)); v,& ● (I, II, HI, IV, V); b?, b;, lower and upper y boundary within

the subregion v

cII,III =

b, – b.
y[(J’111’)’’,-’ c

~5[(@nI)tr] “DH

o =[(J~~,~~I)]tr]-’
2e2 s

o 0

0 0

(A5)
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with

k, 6,–1 ~ = k ,kO (normalized propagation
eb=— ——————

upO 1-k;. ‘0 z constant)

()
Dn = diag ~

()

D1ll . diag ~

70

[

+J;II,IV 2
70

~7 _ ~. e6J~11’lvDIv o

2
0

111, IV—ezJ~
b7 – b.

o

cIII,IV =

o 0 4#e2[(JY’lv)’rl-’
r

1 0 0
e7[(3’’1’1v)’rl -1Dk

with

DN’=&g(&) Dk=diag(~)

0

0 ;(JV,IV)-’
s o

~v,v=

o 0 &(~W)tr
c

43

0

0

0

~[(r”w] ‘1

o

0

0

0

(A6)

(A7)

with the coupling integrals (,$ of higher order than v) where
m

“[~cnLIva Jcm,m el Jcm,IvaDIvael ~cILIvbDIvb

For ~, again replaCe fn,k by g., ~ (cf. (A4)). o 0 111,IVae2J~ III, IVbe2J~ 1
For the finline type in Fig. l(b), the coupling matrices

with

CIII’IV and CIVJV are replaced by
k= 1

~1 = ——
- k;. ()

DIV. . diag ~

6)60Cr b4 – b~

[

cIII,IV = ~lll’w

o
(@I;IV)-l 1

[

(~Iv,v)-1 o 1 [
b JCV,IV’ Jcv.Ivb () o

CIV,V = (A9) ~Iv,v= _

o
~lv,v 20 0

~V,IVa ~V,IVb
1
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and

~III,IV=

~z:;(JIILIV.)U
c o

43

~2”; (pm),
c o

65

*( JHLIV.)’’DH1
s

~ : ~ (pm),
s

43 43

with

HIV,V=

I
o

0

(A1O)

o

0

b4 – bjz (~V,IVa)tr
s

b6 – b~
~(pb)”

s

(All)

For the coupling integrals (A4) and (A8), respectively, with

v, & = (I, II, III, IVa, IVb, V), the functions of (5b) have to

be introduced instead of those of (5a).
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