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Modal-S-Matrix Design of Optimum
Stepped Ridged and Finned

Waveguide Transformers

JENS BORNEMANN AND FRITZ ARNDT, SENIOR MEMBER, IEEE

Abstract —Optimum stepped transformers from rectangular wavegnide

to ridged and all-ruetat finned waveguides are designed with the method of

field expansion into eigenmodes, which inclirdes bigher order mode inter-

action between the step discontinuities. Computer-optimized design data

are given for a Ku-band ridged waveguide prototype with a ridge width of

1 mm, as well as for Ku-band and E-band finned wavegnide transformers

with commerciatfy available metaf fin thicknesses of 0.19 mm and 0.1 mm,

respectively, snitable for metaf-etchirrg manufacturing techniqne. The opti-

mum designs achieve a minimum return loss of abont 36 dB, or 34 dB for

the whole Ku- or E-band, respectively. The theory is verified by compari-

son with measured resntts.

I. INTRODUCTION

R IDGED WAVEGUIDES [1]–[6] and their important

variant with thin ridges (which is usually designed as

a “planar circuit” [7]–[9], “finned waveguide” [5], or “ ~1.
metal finline” [10]) have found many applications in mic-

rowave and millimeter-wave devices [1]–[12]. The ad-

vantages of these circuits include large bandwidths, low

characteristic impedances, and, in its finned version, the

possibility of low-cost, low-loss E-plane integrated circuit

designs [8]–[12]. Of particular importance are the transi-

tion between ridged or finned waveguides of different gap

height and the transition to the rectangular waveguide.

This paper introduces an exact field theory design of

optimum stepped ridged and firmed waveguide trans-

formers (Fig. 1).

While many papers have appeared recently on the prob-

lem of finline discontinuities [13]–[21], among three-

dimensional ridged waveguide or all-metal finline struc-

tures only short end effects [9] and gradual tapers [10] have

been investigated so far with analytical methods. More-

over, with the exception of the variational method in [9]

for calculating short end effects and the generalized tele-

graphist’s equation method in [19] for calculating gradual

unilateral finline tapers, most of the techniques presented

for the analysis of finline or all-metal finline discontinu-

ities (the equivalent circuit methods in [13]–[18] and [20],

the variational method in [21], and the spectral-domain

method in [10]) neglect the influence of the finite metalli-

zation thickness, which has turned out to be important for

all-metal finline constructions (cf. [22]–[24]).

Manuscript received September 2, 1986; revised December 13, 1986.
The authors are with the Microwave Department, University of Bre-

men, D-2800 Bremen, West Germany.
IEEE Log Number 8714115.

L-a —’J
Fig. 1. Ridged or firmed waveguide step transformer structure.

Although there are no hybrid modes [28] -[30] on ridged

and finned waveguides to be considered, the three-dimen-

sional discontinuities of the form of Fig. 1, like double-

plane steps in waveguides [27], require all field compo-

nents as well as the TE- to TM-mode coupling to be taken

into account. The theory given in this paper, which in-

cludes higher order mode coupling effects as well as the

finite ridge or metal fin width, is based on modal field

expansion into orthogonal eigenmodes [22]–[31]. An opti-

mization procedure based on a modified direct search

method where the parameters of the error function are

varied statistically [32] leads to optimum stepped trans-

former designs. Comparison with linearly tapered trans-

former sections of equal length (approximated by a stepped

function) shows the advantage provided by the optimum

stepped design. The design data given may be transferred

into other waveguide bands by suitable frequency scaling

relations which include the metal fin thicknesses. Mea-

sured results verify the theory.

II. THEORY

For the computer-aided design of ridged and finned

waveguide transformers, the modal-S-matrix method

[22] -[24], [27], [35] is applied, which has already proved to

be highly appropriate for the accurate design of millime-

ter-wave components. Similar to the field theory treatment

of E-plane filters or couplers (cf. [22]–[24], [35]), the
transformer structure (Fig. 1) is decomposed into ap-

propriate key building blocks (homogeneous rectangular

waveguide, step discontinuity waveguicle to finned wave-

guide, homogeneous finned waveguide, Fig. 2), and the
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overall scattering matrix of the total transformer is calcu-

lated by suitable direct combination of all single modal

scattering matrices. Therefore; the more general part of the

theory is given here in abbreviated form only; for details,

the reader is referred to [22]–[24], [27], and [35]. The

derivation of the required key building block S-matrix for

the step discontinuity waveguide to finned waveguide,

however, is new and quite different from the one already

given in, e.g., [22] or [35], since another class of modal

fields is involved. Note that for the inverse structure

(discontinuity finned waveguide to waveguide), the related

scattering matrix is simply derived by merely interchang-

ing the corresponding submatrix elements.

H-plane or E-plane discontinuities (as in [22] or [35])

require only TE~O or TE~~ modes, respectively, to be

considered. For the rigorous field theory treatment of the

three-dimensional step discontinuity problem shown in

Fig. 2, however, a superposition of all TE~~ as well as

TM~~ modes is necessary, and the TE- to TM-mode

coupling effect [27] has to be taken into account. This is

due to x-, y-, and z-dependent field distortions at z = O, 1

(Fig. 2). The electromagnetic field [25], [26] in the subre-

gions i = I, II (Fig. 2):

1
E=vx(A~,~)+— v xv X( A>ZZZ)

jac

l!i’=v x( A~zq - +V xv +%=;) (1)

is therefore derived from the z-components of two vector

potentials:

with the wave impedances [25]

-%q = (~Po)/(k:~~) ‘1/%~

YjP = (ace)/(k:~P) = l/Z;P. (3)

V;{, ~, R’~, ~ are the still unknown TE-, TM-mode wave

amplitudes of the forward and backward waves, respec-

tively; k, is the propagation factor; and T~q, T& are the

cross-section eigenfunctions according to the given wave-

guide boundaries.

The functions T~q and T~P in (2) may conveniently be

simplified utilizing the magnetic wall (m.w.) and electric

wall (e. w.) symmetries at x = a/2, and y = b/2, respec-

tively (cf. Fig. 2(a) and (b)). For region H, the eigenvalue

problem may be formulated advantageously using the

transverse resonance method [28]–[30], where the boundary

conditions to be applied in the x direction (electric wall at

m.w, m.w.

Cross-section F1 Cross-section FE

(a) (b)

Fig. 2. Configuration for the rigorous field theory treatment. (a) Wave-

guide (m.w. = magnetic wall, e.w. = electric wall). (b) Ridged or finned
waveguide. (c) Forward and backward waves at the step discontinuities
at z = O and z = 1, respectively.

x = O, magnetic wall at x = a/2, cf. Fig. 2(b)) provide the

corresponding homogeneous system of equations. The

cross-section eigenfunctions of the rectangular waveguide

section I (Fig. 2(a)) and of the ridged or finned waveguide

structure 11 (Fig. 2b), are given in the Appendix.

In order to obtain the modal scattering matrix directly

by the field matching relations of the wave amplitude

coefficients according to (2), the cross-section eigenfunc-

tions are suitably normalized [25], [27] so that for a wave

amplitude of I@ the total power carried by the corre-

sponding eigenmode is

[1
lW for propagating modes

—— jW for evanescent TE modes (4)

– jW for evanescent TM modes.

In (4), the subscript M replaces the indices Hq and Ep

(cf. (2), (3)) for TE and TM modes, respectively. In region

II, the relations between the amplitude coefficients in

subregions IIa and IIb are given by the transverse reso-

nance condition [28]–[30].
Matching the tangential field components of regions I

and II at the common interface at z = O (Fig. 2(c)), as in

[22] -[24], [27], [35], yields the modal scattering matrix (s~)
of the step discontinuity waveguide to ridged or finned

waveguide:

(5)

where the submatrices are given in the Appendix.

The modal scattering matrix (SR) of the combined struc-

ture step discontinuity to ridged or finned waveguide,

homogeneous ridged or finned waveguide section of finite

length f, and step discontinuity back to waveguide (cf. Fig.
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2(c)):

[I$I=(SR)[:XI“)
is calculated by suitably combining the related wave am-

plitude vectors. The submatrices of (6), again, are eluci-

dated in the Appendix.

The series of steps for a complete transformer section is

calculated by direct combination of the single scattering

matrices (6) according to [27], the lengths of the inter-

mediate homogeneous waveguide sections I (Fig. 2(c))

being reduced to zero for calculating the step discontinu-

ities from one fin height to another. Contrary to the usual

treatment with transmission matrices, this procedure pre-

serves numerical accuracy, as the expressions contain

exponential functions with only negative arguments. More-

over, no symmetry of the number of modes at the discon-

tinuity is required. This fact allows one to modify ade-

quately the number of modes [33], [34], if necessary, along

the structure to be considered.

III. DESIGN

As with metal insert filters [22] -[24], the computer-aided

design is carried out by an optimizing program applying

the evolution strategy method [32]. An error function

v
(7)

“=1

is minimized with respect to the parameter vector (Z) =

(sl, s’, S3, . “ “ ; 1~,1’,13, “ “ .)! Here, ~U are the frequency

sample points within the desired passband, and S1lD and

S1l are the desired and calculated reflection coefficients,

respectively, in decibels. The number V of frequency sam-

ple points was chosen to be equal to about 20. For given

waveguide housing dimensions a and b, thickness t of the

metal fins, slot width s~. of the finned waveguide, and

number NT of transformer sections, the parameters X to

be optimized are the slotwidth Si and the length li of the

i th transformer section (cf. Table I).

The advantages of the applied evolution strategy method

[32], i.e., a suitably modified direct ‘search procedure, are
such that no differentiation step in the optimization pro-

cess is necessary; hence, the problem of local minima may

be circumvented. A main optimization strategy parameter

H, a secondary strategy parameter G, and a standard

random variable r ~ ( – 1, +1) influence the alternation of

the parameter vector (X) during the optimization process

with the standard deviation u = H. G [32]. The new param-

eters (X) .eW are calculated at each iteration step by

(X)new= (X)o,,- P(z)o,,”u (8)

where (z) ~1~ are the preceding parameters. Initial VahIeS

for H and G are chosen to be H= 0.01, G =1. G may be

utilized to modify the variation of the individual parame-

ters. After a successful trial, H is doubled; for more than

three unsuccessful trials, H is halved. If the error function

is minimized three times by less than 0.2 percent, the result

TABLE I
OPTIMUM STEPPEDRIDGED AND FINNED WAVEGUIDE TRANSFORMERS

KU-BAND (R140 Wavegulde housing: 15. ‘799mm x 7.899M)
R,dge thickness t . lMM

(Fig.3)
------------------------------------------------ --------

11
= 5.9 S0mm, S1 . 6.670 mm; 12 = 6.000mm, S2 . 5.3201uM;

13
= 7.370nmI, S3 = 4.290mm.; 14 . 6.9001mm, 54 = s.sqe~i

15
. 5. 620mm,

‘5 =
2.4.10 mm; 16 = 6.020mn, 56 = 2 .000-;

(.ymmetr,.al double section tran.for-r)

KA-BAND (R320 wavegulcfe housing: 7. l12mm X 3.556 MM)
I’fetal fln thickness t = 0.19mm

(Fig.4)
------------------------------------------------- -----

11
= 3.139 mm, SL . 2.941 mm; 12 = 3.348 mm, S2 = 2.373uIIw

13 = 3.521 MM, S3 = 1.936 mm; 14 = 3.l18mm, 54 = 1 .545-;

Is . 2.835 mm, S5 . 1.i76mm; 16 . 0.000 mm, 56 = 0.l@O~

(section No.6 I. the f,nned waveguide of slot w,dth .s6)

E-BAND (R740 wavegu. de housing: 3.099mm x 1. 549mm)
Metal fln thickness t . L31.lmm

(Fig. 5)
-- —______________________ -----------------------------

11
. 1.290 mm, ●.l = 1.283 mm; 12 . 1.455 mm, S2 = 1.029 mm;

‘3
. 1.46 f3mm, S3 . 0.831 mm; 14 . 1.291 mm, S4 0.653 mm;

15
. 1.201 mm, 55 . 0.4 S2mm, 16 0.@ O@Imm, ..{, *. 400mm

(section No.6 I. the f,nned wa.,equ, de t,f .,lut witith s,, )

is interpreted as a local minimum. H is then multiplied by

104. So the optimization process begins again for a differ-

ent parameter range. Note that in order to maintain physi-

cally realistic parameters, s,= (~fi~, b), li G (O, A/2), an

appropriate variable transformation [32] is utilized.

The initial values for the slot widths and transformer

section lengths may be chosen from an equidistant subdivi-

sion according to the given data b,s fin, NT, A ~ tid(where

Ag mid k the guide wavelength for the midband frequency).

The CPU time for a six-step transformer design was about

45 min on a Siemens-7880 computer. More favorable

approximations, e.g., fundamental mode quarter wave

transformer prototype dimensions together with a suitably

chosen midband frequency, for the initial values, however,

may reduce the computing time considerably, e.g., by a

factor of 2. A quasi-lumped element approach, as sug-

gested in [33], [34], by increasing the number of “localized”

modes while reducing the interacting modes, has no sig-

nificant effect on the optimization CPU time, which is

influenced mainly by the number of necessary iterations

and not so much by the run time of the single calculation

step.

In the optimization process, eight symmetrical TE modes

together with only one TM mode provide sufficient con-

vergence behavior, which is due to the minor influence of

higher order TM modes at usual .&plane integrated circuit

discontinuities. Neglecting this TM mode, however, yields

frequency shifts of the return loss curve up to about 5
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Fig. 3. Input reflection coefficient l&l I in decibels as a function of Fig. 4. Input reflection coefficient IS1l 1 in decibels as a function of
frequency of an optimum stepped Ku-band ridged waveguide trans- frequency of an optimum stepped Ka-band finned wavegnide trans-
former with two symmetrical five-step sections. Comparison between former with five-step sections. Comparison with a linearly tapered
measurements ( + + ) and theory. Waveguide dimensions in mm; for transformer (approximated by a 15-step function) of same length L =16
transformer dimensions, see Table I. mm. Waveguide dimensions in mm; for transformer dimensions, see

Table I.

percent. The final design data are verified by considering

12 TE and seven TM modes in each transformer section.

t

-50

IV. RESULTS

Fig. 3 shows the calculated and measured input reflec- 1 Sll I J+o
tion coefficient ISIII in decibels as a function of frequency dB
of a stepped ridged waveguide transformer with two sym-

metrical five-step sections for the Ku-band (12–18 GHz, -30

R140 waveguide housing: 15.799 mm X 7.899 mm). The

ridge width is t = 1 mm, and the design data of the

transformer are given in Table I. Good agreement between
-20

theory and measurements may be stated. The measured

transmission loss was less than 0.1 dB.

As shown in Figs. 4 and 5, optimum stepped finned

waveguide transformers from standard waveguide to finned -lo

waveguide of slot width of about one quarter of the

corresponding waveguide height, chosen for design exam-

ple, achieve minimum return losses of about 36 dB or 34 0
dB, for the whole Ku-band (Fig. 4) or E-band (Fig. 5),

respectively. The commercially available metal fin thick-

nesses of 0.19 mm and 0.1 mm are highly appropriate for
etched all metal finline integrated circuit designs. The

comparison with linearly tapered transformer sections of

the same overall length shows a significant improvement of

the return loss values by the optimum stepped design,

whereas the linearly tapered transformer provides better

continuity of the return loss curve as a function of

frequency.

The linearly tapered transformer section is simulated by

means of a staircase function, stepped uniformly in height

and length. Fifteen steps have turned out to yield sufficient

asymptotic behavior of the input reflection coefficient.

The design data for the Kz-band (26-40 GHz, R320

waveguide: 7.112 mm x 3.556 mm) and the E-band (60–90

60 70 80 90

f/GHz ~

Fig. 5. Input reflection coefficient lS1l 1 in decibels as a function of
frequency of an optimum stepped E-band finned waveguide trans-
former with five-step sections. Comparison with a linearly tapered
transformer (approximated by a 15-step function) of same length L = 6.7
mm. Waveguide dimensions in mm; for transformer dimensions, see
Table I. Tolerance ansdysis (dashed curve) of the optimized design for
worst-case variations: strip thickness and slot widths by +0.01 mm,
transformer section lengths by +0.02 mm.

GHz, R740 waveguide: 3.099 mm x 1.549 mm) finned
waveguide transformers are given in Table I. As has been

proved by calculations using the exact method described,

the design data are transferable into other common wave-

guide bands by suitable frequency scaling relations which

should include the metal fin thicknesses.
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The sensitivity of the performance of the optimized with

transformer to dimensional tolerances is demonstrated in

Fig. 5. The dashed curve shows the input reflection coeffi-

cient for a worst-case simulation of typical sheet metal and [1 ’11
(%,.)2( )2(%72

etching tolerances (strip thickness and slot width variation = tO2pOC0– k:~q –

+0.01 mm, section length variation &0.02 mm). (k~~w)2
2n7r 2

(–)d–c
V. CONCLUSIONS

A computer-aided design of optimum stepped ridged

N
2n77 2

and fimed waveguide transformers is described which

[1(kJ%.)2
permits the inclusion of higher order mode coupling effects ()

2 (–) b
= ti2/.toco — k~;p — (A3)

as well as the finite ridge and metal fin thickness. Applica- (k%Pn)2
2n7r 2

tion of a modified direct search method leads to optimum (–)d–c
low input VSWR over the whole waveguide band, as has

been demonstrated for Ku-band and E-band metal finline where the k, are calculated by solving the related eigen-

transformer design examples. The design data are trans- value problem [28]–[30].

ferable into other frequency bands of interest. Measure-

ments made on a Ku-band ridge waveguide five-section B. Derivation of the Modal Scattering Matrix (SJ in (5)

transformer prototype show good agreement with theory. Field matching at the common interface at z = O (Fig.

2c) yields

~ (~)grad T~q(V”q – R~q) + ~ (~)(grad TjP X 2“)(V~P – R&)
~=1 *=1

= ,EJm)www%- w)+ ,:l(E)(WW x<)(W - %) w
In order to eliminate the x and y dependence in the

APPENDIX cross-section functions, (A4) is successively multiplied by
A. Cross-Section Eigenfunctions T& and T& in (2) (grad T~q x Z=), (– grad T&), and (N by grad T~!,

Region i = I:
(grad T~~ X F,).

Integration over the corresponding crc)ss sections, using

[
T;q(x, y) = A;COS (2m –l);x 1 the relations [31]

‘(cOs~J’)/~m ‘{gradT’’E’xz)(grad~~lI~ ~~adTA..d~=~

. r

[ 1
2n9r

rs

T~p(x, y) =Djsin (2 M–l)ZX -sin
a

~y (Al)

J ( “):grad T;, grad T~, X e.

where indices q and p are related to the waveguide modes F’

m, n by rearranging ~hem with respect to increasing cutoff

frequencies; 8.. is the Kronecker delta.
= /( grad T’, x z) grad Ti, dF = O (A6)

F’
Region i = II:

(A2)
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and truncation of the infinite series in (A4), (A5) provides

the matrix equation system of the discontinuity at z = O:

Diag{~)( V; + Rb) = J~~Diag(~)(V~l + R})

In (A7), Diag(~H),

ments jfi; T means

matrices given by

(A7)

denotes a diagonal matrix with ele-

transposed; and (J) are coupling

/((JEH)PI = ~,,– grad Tip) (grad T# X e;) dF

J(Jm)pk = ~,,grad T& grad T& dF

J((‘HE)qk= ~[r )grad T~q x Zz grad T~~ dF = O. (A8)

Rearranging forward and backward waves in (A7) yields

(5) with the modal scattering matrix (S~), where the sub-

matrices are given by

s~~l= M’{u+ W(u– fm’zq}

s~22 = u – 2MTWM (A9)

with U = unity matrix and

w=(u+A’’fMT)-l (A1O)

It should be noted that only two complex matrix inver-

sions have to be carried out ((A1O) and (A12)) for calculat-

ing the modal scattering matrix of the ridge or finned

waveguide of finite length.
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