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Transverse Resonance, Standing Wave, and
Resonator Formulations of the Ridge

Waveguide Eigenvalue Problem and Its
Application to the Design of E-Plane

Finned Waveguide Filters

JENS BORNEMANN, MEMBER, IEEE, AND FRITZ ARNDT, SENIOR MEMBER, IEEE

Abstract—Utilizing the rigorous field distribution of the ridge wave-

guide eigemnortes, this paper presents an accurate computer-aided de-

sign of compact, low-cost, low-insertion-loss evanescent-mode waveguide

band-pass filters with bilateral metallic E-plane fins. The design theory

takes into account the influences of both the finite fin thickness and the

higher order mode interaction at all discontinuities. The numerical

advantage of the transverse resonance method for solving the related

cross-sectional eigenvalue problem is demonstrated for the design of

quasi-high-pass and band-pass filters of different ridge gap widths and

is compared with the classical standing wave and resonator mode-

matching techniques. Computer-optimized design data are given for

filters with passbands in X-band (8-12 GHz) and E-band (60-90

GHz), which achieve high skirt selectivity and wide stopband. The theory

is verified by measurements.

I. INTRODUCTION

R

lDGED and finned waveguide circuits have found

many applications in microwave and millimeter wave

devices [1]–[ 15]. The advantages of these circuits include

large single-mode broad-band operation and, in its finned

version with thin ridges, the possibility of low-cost, low-loss

&plane integrated circuit designs. Various field-theory

approaches have been reported for the characterization

of the ridge waveguide discontinuity [7], [8], [12]–[14].

Most of the techniques presented are either based on

approximate equations for the field distribution in ridge

waveguides or neglect the influence of the finite metal-

lization thickness. However, the effects of both the accu-

rate field description of the ridge waveguide sections and

the metallization thickness have turned out to be impor-

tant for reliable filter designs with cascaded all-metal

finline discontinuities.

Bilateral or unilateral ridge waveguide sections are

often used to construct distributed shunt capacitances in

low-pass filter designs [11], [15]. More recently, nontouch-
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ing unilateral E-plane fins of negligible thickness with

and without a dielectric layer [12] have been applied for

the design of evanescent-mode band-pass filters. Such

filters [12], [16]–[18] are of particular importance due to

several advantages over the conventional filter types, e.g.

compactness and wide stopbands. The usual thick ridge

waveguide, capacitive screw, and round post filter ele-

ments, however, are often difficult to fabricate at low cost

and to mass-produce [15]–[18]. On the other hand dielec-

tric layers cause additional losses; hence the low-inser-

tion-loss design potential inherent in the finned wave-

guide technology may not be fully utilized. Moreover thin

unilateral fins may lead to small ridge gaps, and therefore

may achieve a low power handling capability [12].

In this paper, a rigorous field theory description of the

ridge waveguide is utilized to formulate the modal scatter-

ing matrix of the waveguide-to-ridge-waveguide disconti-

nuity, which is the basic building block in the design. The

computed response, however, is extremely sensitive to

different cross-section eigenfunction formulations, be-

cause the separation constants and normalization factors

involved have to be numerically calculated before the

matching procedure in the propagation direction. These

quantities directly influence the complexity, the numerical

accuracy with respect to the number of expansion terms

considered, and the computational effort for the three-

dimensional mode-matching process.

Therefore special emphasis is placed on the selection of

a stable and reliable design method. Three distinct

mode-matching techniques, each having its individual ad-
vantages, are applied to solve the special eigenvalue prob-

lem for the purpose of investigating their suitability for

the efficient analysis of finned waveguide discontinuities.

The first is the transverse resonance method, which has

turned out to be well suited to dealing with complicated

waveguide sections [13], [19]–[21]; the second is the con-

ventional standing wave method [22], which shows the

advantage of independent numbers of expansion func-

tions in the subregions; and the third is the resonator
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Fig. 1. Evanescent-mode bilateral E-plane finned waveguide band-pass

filter. (a) Input and output waveguide, below-cutoff waveguide with

E-plane fins of thickness t.(b) Cross-sectional dimensions. (c) Longi-

tudinal section dimensions in the filter region.

method, which is reported to yield a more appropriate

numerical procedure [23]. In contrast to [22] and [23], in

this paper all three techniques are based on a six-compo-

nent representation of the electromagnetic field and on

the inclusion of TM- to- TE-mode coupling effects.

The rigorous modal scattering matrix description of

ridge waveguide discontinuities is then applied to provide

an efficient computer-aided design method for a type of

millimeter-wave printed circuit evanescent-mode wave-

guide band-pass filter (Fig. 1). Based on bilateral all-metal

E-plane fins, the design combines the well-known proper-

ties of the waveguide E-plane integrated-circuit technol-

ogy [7], [11], [12] with the advantages of the evanescent-

mode concept [15]–[18] and the low-insertion-loss quality
resulting from the complete absence of supporting di-

electrics [24]. The proposed structure, where the finite fin

thickness is included in the design, achieves relatively

large gap widths (about one quarter of the waveguide

height in the below-cutoff section) and leads to filter

characteristics with high skirt selectivity and wide stop-

,/
bands. Moreover, the exact design theory presented per-

mits high-precision manufacturing by etching or milling

techniques without the necessity of postassembly trial and

error adjustment methods.

The immediate modal S-matrix combination of all in-

teracting structures includes the higher order mode cou-

pling effects and allows the stopband characteristics of

the filters to be taken into account for the filter design.

For computer optimization, the evolution strategy method

[13], [24], i.e., a suitably modified direct search procedure,

is applied where no differentiation step in the optimiza-

tion process is necessary; hence the problem of local

minima may be circumvented. Design examples for opti-

mized evanescent-mode E-plane finned band-pass filters

with passbands at about 11 GHz and 75 GHz are given.

The design for 11 GHz uses WR 90 waveguides above

cutoff for the input and output sections and a WR 42

waveguide below cutoff for the filter section. For the 75

GHz design example, WR 12 waveguides above cutoff

and a WR 7 waveguide below cutoff, reduced in height,

are applied. The filters achieve high attenuation over a

wide second stopband. The ‘theory k verified by measured

results of an E-plane finned WR 62 structure and a WR

90 evanescent-mode filter.

H. THEORY

A. Field Description with Two Vector Potential Components

For the computer-aided design of the evanescent-mode

E-plane finned waveguide filter (Fig. 1), the modal S-ma-

trix method [13], [19], [20], [24] is applied. The filter

structure is decomposed into two key building block dis-

continuities: the double step junction from the input

waveguide above-cutoff to the waveguide below-cutoff

filter section, and the step discontinuity from the rectan-

gular waveguide to the E-plane finned waveguide. Note

that for the corresponding inverse structure (e.g., the

junction from waveguide below cutoff to waveguide above

cutoff), the related modal scattering matrix is simply

derived by interchanging the corresponding submatrix ele-

ments of the original structure. Combination with the

known scattering matrices of the corresponding interme-

diate homogeneous waveguide sections of finite lengths

yields the total scattering matrix of the filter.

Since a rigorous field description of the step discontinu-

ities involved (Fig. 1) requires all field components as well

as the TM-to-TE coupling effects to be considered, the

electromagnetic field in the subregions i = O, I, II (Fig.

l(c)),

is derived from the z components of two vector poten-
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tials,

AVHZ= ~ (JZ&) “~&( X, J’)
q=l

“ [ V;q exp ( – jk;H~ z)+’R~qexp(+jk,~.~)]

An~z = ~ (JY&) . T;,( ~> Y)
p=l

“[V& exp(-~k:~Pz)- RLP exp ( + ~k,~,z)] (2)

with the wave impedances

Z~q = (~pO)/’(k;HQ) = l/Y~,

Y~P = ((qJ/’(k;~P) = l/Z~P. (3)

VA, E and R~, ~ are the TE- and TM-mode wave ampli-

tudes of the forward and backward waves, respectively,

which have to be related to each other at the correspond-

ing discontinuity. This will yield the corresponding

scattering matrix relations. The propagation factors are

denoted by k=, and T~~, T~P are the cross-section eigen-

functions of the corresponding waveguide structures un-

der consideration. For the rectangular waveguide sections

(regions i = O,I), the relations of [251 are given for com-
pleteness, using the present notation:

1) Input-output waveguide (region O):

‘iq(xy)=A’c0s[(2m-l)ixl

(CC’S*’),(-)

‘:Jx7y)=D~sin[(2m-1)51”sin%y‘4)
2) Waveguide below cutoff (region I):

[
T~q(x, y) = A;cos (2rn –l)lX 1

(C++(A)
[ 1

2nw
T&(x, y) = D;sin (2rn –l)ZX sin —

a b ‘“ ‘5)

For the E-plane finned or ridged waveguide eigenvalue

problem (region II), the transverse resonance, the stand-
ing wave, and the resonator method are used and com-

pared with each other.

B. E-Plane Finned or Ridged Waveguide Eigenvalue

Problem

Three different mode-matching methods are investi-

gated to solve rigorously the cross-sectional bounda~

value problem of the finned or ridged waveguide (Fig. 2).

As the formulations directly influence the solution of the

related discontinuity problem with regard to complexity,

the computational effort, and the numerical accuracy in

relation to the expansion terms considered, a comparison

of these three rigorous standard field theory methods is

particularly indicated. The functions T& and T~~ may

conveniently be simplified utilizing the magnetic wall and

electric wall symmetries at x = a/2 and y = b/2, respec-

tively.

1) Transverse Resonance Method (TM): 13y considering

propagation to take place in the x direction, an inhomo-

geneous waveguide cross section can be regarded as a

transmission line subdivided into homogeneous subre-

gions [13], [19]–[21]. A transverse transmission-line matrix

relates the field amplitudes at the lower and the upper

bounda~ of each subregion. Finally, the line resonator

resonance condition is satisfied by the thus far neglected

bounda~ condition at the metallic sidewalls. For the

ridge or finned waveguide cross section under considera-

tion (Fig. 2(a)), the transverse resonance method with the

boundary conditions to be applied in the x direction (in

our case electric wall at x = O, magnetic wall at x = a/2)

provides the corresponding homogeneous system of equa-

tions, requiring the system determinant to be zero [13],

[19]-[21].

The cross-section eigenfunctions are expressed in terms

of the x- and y-dependent functions of subregions IIa and

IIb:

L

(6)

where superscripts IIa and IIb denote, respectively, the

corresponding terms in the finned waveguide sub–cross

sections (Fig. 2(a)), and the kX’s are calculated by solving

the related cross-section eigenvalue problem [23].
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Fig. 2. Finned or ridged waveguide cross section. (a) Subregions for

the transverse resonance method (TRM) and the standing wave

formulation (SWF). (b) Subregions for the resonator method (RM).

The transverse resonance procedure reduces the size of

the characteristic matrix equation to a quarter of the

original size. Furthermore, it makes the method very

flexible because an arbitrary number of subregions (e.g.

finlines with multiple inserts [20]) maybe easily taken into

account in the matrix system simply by multiplying the

additional transmission-line matrices of the corresponding

insert subregions. On the other hand, due to the trans-

verse resonance technique [13], the number N of the

expansion terms must be the same for both subregions.

For very small slot widths of about w/b< 0.1 (cf. Fig.

l(b)), therefore, the related limited number of expan-

sion terms in this case may lead to a poor convergence

behavior.

However, the main advantage of the transverse reso-

nance method described is the fact that there are no poles

in the determinant function of the resulting characteristic

matrix equation. Therefore the search algorithm to find a

given number of subsequent eigenvalues (i.e. the propaga-

tion constants for a given frequency, or, as in the present

case, the cutoff frequencies) can be simplified and the

risk of omitting eigenvalues is very low, in contrast to both

other methods under consideration.
2) Standing Wave Formulation (SWF): For this formula-

tion, the tangential field components EY, HZ or Ez, ~Y

are matched directly at the common interface at x = e (cf.

Fig. 2(a)), which results in tSVOhomogeneous matrix equa-

tions [221. Assuming that the numbers M and N corre-
spond to subregions IIa and IIb (Fig. 2(a)), respectively,

with M < N, then the cross-section eigenfunctions are

given by

,.[cos[~b-c))pw

(++(4-=)]

~=1 \ \ -//

[)mrr
“sin —

b (Y-c)

?–c

N

+ ~ D;:b(l/ k;&H )’
~=1

“Sin(k=)sin(+y)o
This expression is essentially equivalent to that given in

(6), but with the notable exception that the numbers M
and N of the expansion terms may be independently

chosen in each subregion. This advantage, however, is

undermined by the fact that, particularly for higher order

modes, the determinant function of the characteristic

matrix equation yields zeros with poles in the immediate

vicinity. As a consequence, certain eigenvalues of higher

order modes, which can have a significant influence on

the three-dimensional field distribution (especially for
small gap widths), may not be detected, and the resulting

modal scattering matrix parameters are no longer fully

reliable.

3) Resonator ikfethod (RM): In order to apply the res-

onator method [23], the cross section (Fig. 2(b)) has to be

divided into three subregions, one of which is called the

resonator region: IIc. The basic idea of this approach is to

force the electric field to be zero at .x= e and Y = (O, c) in

contrast to the two preceding methods, where this condi-

tion is met indirectly by adding up a number of expansion

terms, Therefore the propagation is considered to take
place in the y direction for region IIb. By applying the

superposition principle and matching the fields of subre-

gions IIb to IIc at Y = c, and those of IIa to IIc at x = e,

the resonator functions (IIc) can be expressed in terms of

the subregions IIa and IIb, respectively [23].
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As a result, the cross-section eigenfunctions read

U:(X, Y)

n=O \

T;;(x, y)

= ~ D~~FJ&. sin
/71=1

N

where the expressions FX and FY are elucidated in the

Appendix.

The more complicated structure of these functions,

compared with (6) and (7), is caused by the additional

plane of subregion interaction due to the division into

three subsections (Fig. 2(b)). At first glance, the resonator

method seems to be a very attractive technique for solving

this eigenvalue problem, as it combines the advantage of

the independent choice of the number of expansion terms

in subregions Ha and Hb with the feature that the bound-

ary condition at the plane x = e, Y = (O, c) is exactly

satisfied by the corresponding resonator function, which

does not depend on the number of expansion terms

considered. However, the situation associated with the

determinant function of the related characteristic matrix

equation has turned out to be still more severe than that

of the standing wave formulation: the poles in the imme-

diate vicinity of the zeros to be detected require a very

time consuming search algorithm. Despite this effort,

eigenvalues may be overlooked which would otherwise

have been found relatively easily with the transverse reso-

nance method.

C. Modal Scattering Math

In order to calculate the modal scattering matrix of the

key building block discontinuities of the filter component

(Fig. 1), the coefficients A:, D;, Al, and D; in (4) and

(5) and the amplitude vectors of the expansion functions
A~a, A;Ib, D 11,

~ , and D~lb in (6)–(S) are normalized so that

the power carried by a given mode is

F’~ ==
J( )

~~ X G’ ~z dF = @~Y; J( grad T;)z dF
F’ F’

{

1 w, propagating modes
. j W, evanescent modes (9)

–jW, evanescent TM modes.

In this equation, the subscript M replaces the indices Hq

and Ep for TE and TM modes, respectively. Matching

the tangential field components of regions I and II at the

common interface yields the modal scattering matrix (S)

of the related discontinuity waveguide to finned wave-

guide:

where the submatrices are already described

( 10)

in [13].

The modal scattering matrix of the double plane step

discontinuity of the rectangular waveguides of different

cross section, regions O to I (Fig. l(c)), is already derived

in [25]. The series of step discontinuities for a complete

filter structure is calculated by direct combination of the

single modal scattering matrices, and the corresponding

relations are given in [13], [24], and [25]. As with metal

insert filters and finned transformers [13], [24], the com-

puter-aided design is carried out by an optimization pro-

gram applying the evolution strategy method. An error

function is minimized with respect to a parameter vector

which contains the coupling and resonator lengths as well

as the slot widths (Fig. l(c)).

III. RESULTS

Fig. 3 shows the calculated transmission coefficient ISZII

in dB as a function of frequency of a quasi-high-pass filter

where the gap width w/b = 0.81 is relatively high. A WR

90 (22.86 mm x 10.16 mm) waveguide housing is chosen

for the input and output waveguide, and the ridge wave-

guide section utilizes a WR 42 (10.668 mm X 4.318 mm)

waveguide housing. In Fig. 3(a), the transverse resonance

method (TRM) is used to solve the related ridge wave-

guide eigenvalue problem and parts (b) and (c) of the

figure show the solutions with the standing wave formula-

tion (SWF) and the resonator method (RM), respectively.

Seven TM modes and 12 TE modes in (2) and (3),

together with M = N = 9 expansion terms in (4)–(8), have

been used. Good agreement between the results of the

three different mode-matching techniques is given.

In order to check the three different cross-section for-

mulations of the ridge waveguide against experimental

data, Fig. 4(a) shows the calculated and measured input

reflection coefficient IS1~I in dB as a function of frequency

of a very simple, nonoptimized filter structure with four

bilateral E-plane fins in a single WR-62 waveguide (15.799

mm X 7.899 mm) housing (cf. Fig. 4(b)). The thickness of

the fins is t = 0.9 mm, and the gap width w/b = 0.39 is

about half that of the preceding case (Fig. 3), Due to the

smaller gap width, the three different mode-matching

techniques applied—TRM (solid line), SWF (dashed line),

RM (dash–dotted Iine)—lead to different solutions. This

is particularly true for the RM. The numbers of modes

and expansion terms are equivalent to those chosen for

calculating the results in Fig. 3. The mechanical toler-

ances of the structure (which have been measured by a

measuring microscope) are taken into account in the

analysis; for the slightly oblique gaps, a mean value for

the corresponding gap width has been assumed. Very
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Fig. 3. Quasi-high-pass filter. WR 90(22.86 mmx10.16 mm) input/output waveguide, WR42(10.668 mm X4.318 mm)
ridge waveguide section. Filter dimensions (cf. Fig. 1): f=l mm, lCI=lC- =0.236 mm, 1~1=1~3=1.001 mm,
lc2=lc3=11.429 mm, l~2=l.58mm. (a) Transverse resonance method (TRM)solution of theeigenvalue problem.(b)
Standing wave formulation (SWF) solution of the eigenvalue problem. (c) Resonator method (RM) solution of the
eigenvalue problem.

good agreement between theory and measurements has

been achieved for theTRM.

For still smaller gap widths, w/b= 0,116, the differ-

ence between the results obtained by applying the TRM

(solid line) and, particularly, the RM (dash-dotted line) is
increased further. Fig. 5 shows the calculated transmis-

sion coefficient lSzl I for an optimized X-band

evanescent-mode E-plane finned waveguide band-pass fil-
ter design example with passband at about 12 GHz. As in

Fig. 3, a ,WR 90 waveguide housing is chosen for the

input/output waveguide and a WR 42 housing for the

filter section. Seven TE modes and 12 TM modes are

utilized in (2) and (3} the numbers of expansion terms

chosen were N = 5 for the TRM and M = 4 and N = 9

for the SWF and the RM respectively. In order to search

the cutoff frequencies for the related ridge Waveguide,
cross-section eigenvalue problem, the frequency step’

widths in the numerical search algorithm for the SWF

and the RM have been set to 1% of the corresponding

step width utilized in the search algorithm for the TRM.

In spite of the large increase in CPU time (approximately
a factor of 4 for a complete frequency response calcula-

tion), important modes in the eigenvahte solution formu-

lated by the SWF, and particularly by the RM, have been

overlooked. For small gap widths, therefore, both the

SWF and particularly the RM are considered to be inap-
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Fig. 4. Nonoptimized simple filter structure, to verify the theory. Four
bilateral E-plane fins in a single WR 62 waveguide housing; measured
dimensions: 15.85 mm x 7.925 mm, fin thickness t= 0.9 mm, gap
width w = 3.1 mm. Filter dimensions (cf. Fig. 1): [Cz = Icq = 1.025 mm,

1~1 = l~i = 2.6 mm, 1C3 = 10.5 mm, l~z = 1R3= 8.95 mm. (a) Calculated
and measured ( + ) input reflection coefficient I,S’ll I in decibels versus

frequency. Transverse resonance method (TRM, solid line), standing
wave formulation (SWF, dashed line), and resonator method (RM,
dash–dotted line). (b) Photograph of the realized structure.

prQpriate for adequately solving the related eigenvalue

problem. The final computer-optimized design, therefore,

is carried out by utilizing the TRM.

An optimized X-band evanescent-mode E-plane finned

waveguide band-pass filter design example with passband

I
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Fig. 5. Computer-optimized X-band evanescent-mode E-plane finned
waveguide band-pass filter. WR 90 (22.86 mm X 10.16 mm) waveguide
input and output housing WR 42, (10.668 mm X 4.318 mm) below-
cutoff waveguide. Fin thickness r = 1 mm; gap width w = 0.5 mm.
Design with five E-plane fins. lCI = 1C6 = 0.2 mm; lR1 = 1R5= 0.975

mm, 1C2 = 1C5= 10.944 mm, l~z = 1~1 = 1.541 mm, 1C3= 1C4 = 12.120

mm, l~j = 1.491 mm; 12 TE, 7 TM modes. Expansion terms: N = 5

(TRM), N =9, M = 4 (SWF, RM). Transmission coefficient applying

the transverse resonance method (TRM, solid line), the standing wave

formulation (SWF, dashed line), and the resonator method (RM,
dash–dotted line) for the related eigenvahre solution.
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Fig. 6. Computer-optimized X-band evanescent-mode E-plane finned
waveguide band-pass filter. WR 90 (22.86 mm X 10.16 mm) waveguide

input and output housing; WR 42 (10.668 mm X 4.318 mm) below-
cutoff waveguide. Fin thickness t= 1 mm; gap width w = 0.975 mm.
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Fig. 7. Computer-optimized E-band evanescent-mode E-plane finned waveguide band-pass filter. WR 12 (3.098

mmxl.549 mm) input and output waveguide; WR 7 below-cutoff waveguide which is reduced in height (a=l.651 mm,

b =0.668 mm). Fin thickness t = 150 ~m; gap width w = 0.146 ~m.

at about 11 GHz is shown in Fig. 6. The design with three

E-plane fins of thickness t= 1 mm, a WR 90 input and

output waveguide, and a WR 42 below-cutoff waveguide

achieves an attenuation in the second stopband of more

than 50 dB above 13.5 GHz and within the adjacent

Ku-band. A comparison with the characteristic of a corre-

sponding E-plane metal-insert coupled resonator filter

[24] with three resonators (dashed line) demonstrates the

significant improvement in rejection given by the E-plane

printed-circuit evanescent-mode filter technique.

Fig. 7 shows the results of a computer-optimized E-

band evanescent-mode E-plane finned waveguide band-

pass filter design example with a WR 12 (3.098 mm X 1.549

mm) input and output waveguide and with a WR 7

waveguide reduced in height (1.651 mm x 0.668 mm) for

the below-cutoff filter section. This design, with three

E-plane fins of thickness t = 150 ~m, achieves a minimum

stopband attenuation of more than 40 dB up to about 110

GHz (the end of the next higher frequency band, the

W-band). The sensitivity of the performance of the opti-

mized E-band filter to dimensional tolerances is demon-

strated by the dashed curve, which shows the insertion

loss for a fin gap width increased by only 2 ~m.

Fig. 8 presents a comparison between theoretical and

measured data for the structure currently under investiga-

tion. An easily fabricated Ku-band three-resonator

evanescent-mode E-plane finned waveguide filter (Fig.

8(b)) with a fin thickness of t= 1 mm has been realized by

a simple milling technique. A WR 90 waveguide housing

has been chosen for the input/output waveguide, and the

filter section is a WR 42 waveguide below cutoff. The

measured insertion loss over the passband is only about

0.2 dB. Good agreement between measurements and the-

ory is given (cf. Fig. 8(a)) if the actual geometrical dimen-

sions of the filter (measured by a measuring microscope)

are taken into account in the calculations. This holds also

for the return 10SS curve which has significantly higher

sensitivity to design tolerances. As a consequence, these

results demonstrate the validity off the proposed design

technique in the practical realization of these filters. The

filter characteristics of Figs. 7 and 8(a) not only illustrate

the necessity for a reliable design theory taking into

account all relevant parameters but also show the require-

ment for high-precision fabrication facilities.

IV. CONCLUSION

The modal S-matrix method presented here achieves

an exact computer-aided design of compact, low-cost,

low-insertion-loss evanescent-mode bilateral E-plane

finned waveguide band-pass filters with wide stopbands.

The theory, which includes the finite thickness of the fins’

as well as higher order mode interactions at all disconti-

nuities, leads to a reliable prediction of the filter charac-

teristic and allows the stopband characteristic of the filter

to be taken into account in the optimization process.
Moreover, this design leads to relatively wide gap widths,

which may help to meet high power handling require-

ments. The numerical advantage of the transverse reso-

nance method for solving the related cross-sectional

eigenvalue problem of the ridge waveguide section is

demonstrated by comparison with solutions obtained by

the more classical standing wave or resonator mode-

matching techniques. The theory shows excellent agree-

ment with the measurements presented.
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Fig. 8. Ku-band three-resonator evanescent-mode E-plane finned
waveguide filter with a fin thickness of f = 1 mm realized by a simple

filing technique. WR 90 input\ output waveguide, WR 42 waveguide
below-cutoff filter section. Actual dimensions: al X bl = 22.85 mm X

10.15 mm; a x b = 10.66 mm X4.29 mm; f = 1 mm, lCI = 0.25 mm,
1C2= 1C3= 11.45 mm, 1C4= 0.24 mm, 1~1 = 0.99 mm, l~z = 1.6 mm,

l~q = 1.01 mm; WI = W’z= W3 = 0.98 mm. Number of expansion terms
used N = 9 (cf. eq. (6)); modal scattering matrix calculated with 20 TE

and 12 TM modes. (a) Calculated (— ) and measured (+) filter

response. (b) Photograph of the prototype under investigation.
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