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AMract-A general technique for solving homogeneous ma-

trix equations as applied to numerical modeling procedures in

microwave and millimeter-wave structures is introduced. By

usiug singular value decomposition, well-known numerical prob-
lems related to poles and steep gradients in the determinant

function are eliminated. The proposed technique is generally

applicable, improves the accuracy and reliability of computed

results, and significantly reduces the CPU time due to a more
moderate behavior of the function to be analyzed. A dkpersion
characteristics example of a conductor-backed slotline MMIC
structure illustrates the advautage of the pole-free formulation
over conventional determinant calculations.

I. INTRODUCTION

M ANY applications of existing numerical techniques

for the analysis of microwave and millimeter-wave

structures lead to a homogeneous matrix equation in the form

of

(A). z=O, (1)

where (A) is a complex matrix of size m x n(m > n) and

z is an n-element column vector, e.g., [1], [2]. In order to

determine the solutions of this equation, it is common practise

to vary a (complex or real) parameter T until

det(A) = O for T = TO. (2)

This parameter -y can be the propagation constant, the effective

permittivity, or the cutoff frequency. The corresponding ele-

ments of the solution vector x are required for the calculation

of the characteristic impedance, the field distribution, or for

three-dimensional analyses.

The accuracy with which (1) can be solved is directly

related to the accuracy with which the zeros of det (A) can be

detected. For most of the numerical techniques used [1],[2],

however, this is a difficult task because of two factors. First,

det (A) is a rapidly changing function with y, containing not

only poles and zeros in close neighborhood but also extremely

steep gradients and, secondly, neither the pole nor the zero

locations can be expressed analytically. Therefore, (1) has to

be solved on a computer where any search algorithm to detect

the zeros has to operate at small step widths, has to cope

with inaccuracies introduced by the numerical limits of the
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computer and, therefore, slows down the numerical solution of

(1) significantly. Although these difficulties are well known,

only few attempts to address and alleviate this problem for

finline circuits have been reported so far.

In [3], a formulation based on pole-zero pairs is used. In

[4], the poles are used to construct a pole-free function which

then can be searched for its zeros. In both cases, the accurate

determination of the pole locations is required in a first step in

order to reliably detect the zeros in the second step. A well-

kuown possibility of reducing or even avoiding poles is to

maintain the original equations as derived from the boundary

conditions and refrain from any manipulations. Hence, a pole

only occurs if one matrix elements goes to infinity. However,

the resulting large matrix, which has to be solved for a

given number of consecutive determinant zeros, often leads

to unacceptably high CPU time requirements. A method that

combines a small matrix size with a pole-free determinant

function [5] exhibits an almost rectangular function shape, thus

making great demands on the accuracy of the computer.

Therefore, this letter presents a general technique for solving

the (complex) homogeneous matrix equation. The method is

based on singular value composition which is a powerful

algorithm for dealing with matrices that are either singular or

else numerically very close to singular [6]. It is demonstrated

that by detecting the minima of the minimum singular value,

instead of the zeros of the system determinant, the presence

of poles can be eliminated, thus significantly simplifying the

search algorithm and increasing the accuracy of the compu-

tations. Moreover, the detected value of the minimum itself

provides a clear indication for the accuracy achieved.

II. THEORY

The singular value decomposition of the matrix (A) in (1)

requires that

(A) = (W)(S)(V)+, (3)

where (S) is a diagonal matrix formed by the singular values

in decreasing order, the columns of (W) and (V) are the left

and right singular vectors of (A), respectively, and + indicates

the transposed conjugate [7]. (It should be mentioned that
this procedure differs from the standard eigenvalue equation

(A) oz = J . z which requires the solution of det{(A) - ~ ~

(1)} = O. In this letter, we are not concerned with eigenvalues

and eigenvectors. We rather solve for the singular values of a
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necessarily singular matrix(A) andthe corresponding solution

vector z (cf. (l)). For a more detailed description, which

includes Fortran source codes, thereader is referred to [6]).

det (A) is still a function of v, but instead of detecting zeros

of det(A), the algorithm now searches for the minima of the

last elementom of thediagonal matrix (S), which for~=Vo

yields

Om = 0: (4)

It should be noted that (2) and(4) are equivalent conditions,

that is

mm =0, if and only if det(A) =0. (5)

As will be demonstrated in the next section, detecting the

minima of o~ is extremely simple and far more reliable than

the search for zeros of det (A). Moreover, if (5) is satisfied, the

last column of (V) automatically contains the corresponding

solution vector x (cf. (l)). For a square matrix (A), which is

the case for most numerical problems related to microwave

transmission lines, the singular values al to rrm are real. In

more general applications (m > n), the singular values can

bemadereal bysimultaneous diagonalization, e.g., [8].

Although the search for a minimum is somewhat more

difficult than for a zero, the advantage of singular value decom-

position lies primarily in the fact that the procedure provides

numerical stability independent of the presence of poles or

steep gradients since it is especially designed for singular

or near-singular matrices [6], [7]. Moreover, it automatically

provides the user with the corresponding solution vector whose

calculation, using the conventional search for det (A), might be

slightly inaccurate depending on the accuracy of the detected

zero. Again, for the singular value decomposition itself, we

would like to refer the reader to [6] since its mathematical

formulation is beyond the scope of this letter.

III. RESULTS

The advantage of the singular value decomposition in (3),

(4) over the more commonly used zero search of det (A) is

demonstrated for the case of a complex homogeneous equation

derived from a scattering-type transverse resonance formu-

lation [9] as applied to a conductor-backed MMIC slotline

structure [10], Fig. l(a) compares the system determinant

(solid line) with the minimum singular value (dashed line)

versus the normalized propagation constant. The zeros of the
determinant, which coincide with the minima of the minimum

singular value, correspond to the normalized propagation con-

stants of the fundamental (Fig. l(a), right) and the next seven

higher order modes (from right to left). Due to the presence

of poles and steep gradients in the determinant function, the

accurate and reliable detection of the determinant zeros on

a computer with limited accuracy is more difficult than the

search for the minima of Om.

Fig. l(b) shows an enlargement of Fig. l(a) that focuses on

one of the critical regions around kz /ko = 3.14. Numerical

investigations have shown that if the circuit parameters (cf.

legend of Fig. 2) or the frequency are changed, the two

zeros between h. iko = 3.12 and 3.13 move toward each
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Fig. 1, (a) Behavior of the system determinant (solid line) and minimum
singular value (dashed line) for a modified transverse resonance formulation
of an MMIC conductor-backed slotline structure. Zeros correspond to the
normalized propagation constants of fundamental and higher order modes. (b)
Enlargement of (a) in the region around k. /lco = 3.14.

other until a zero can no longer be detected. This is a

potential disadvantage when using the determinant function.

The singular value decomposition, however, clearly identifies

this point as two solutions of the homogeneous equation

system (l). In cases like this, not only the minimum but also
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the next singular value vanishes. In the practical application of,

e.g., a dispersion diagram, this means that the method permits
the detection of two modes having identical propagation

constants at a certain frequency whereas, in comparison, these

modes would not be detected using the conventional search

for the zeros of the determinant.

Finally, Fig. 2 shows a complete dispersion diagram of

the slotline structure including reference values presented in

[10]. Although the CPU time for the calculation of one single

singular value decomposition is slightly higher than that for

the corresponding determinant, the overall computation for the

complete diagram of Fig. 2 could be reduced by a factor of

3.5 compared to the determinant search algorithm used in [9].

This is due to the absence of poles and the general shape of the

singular value function, which offers the possibility of using

variable step widths during the search for the minima. An

additional advantage of this method is that an increase of the

minima of T~ indicates a reduced accuracy in the computation.

This can be incorporated into a software package in order

to inform the user of possible errors due to complex matrix

operation or limited precision of the computer. So far, detected

minima more than 15 orders of magnitude below the maxima

have provided reliable results.

IV. CONCLUSION

Singular value decomposition eliminates numerical prob-

lems in determining solutions of homogeneous matrix equa-

tions as related to numerical modeling procedures for mi-

crowave and millimeter-wave structures. Instead of poles and

steep gradients observed in the commonly used determinant

function, the general technique proposed here produces a

simple and easy-to-analyze function whose minima correspond

to the solutions sought. Its general applicability, its reduction

in CPU time, its improvement in accuracy, its reliability on

the computed results and its ability to locate zeros of higher

order make this technique an attractive and powerful tool for

electromagnetic field modeling.
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