DESIGN OF AN L-BAND DUAL FEEDHORN FOR THE PURPOSES OF MICROWAVE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE

Paul Horowitz
Harvard University, Department of Physics,
Lyman Laboratory Cambridge,
Massachusetts, U.S.A.

Martin Gimerský
University of Victoria, Department of
Electrical & Computer Engineering,
Victoria, British Columbia, Canada

Abstract

Logic behind the design of a dual feedhorn for the 26-meter Cassegrainian antenna of the Agassiz Station-Harvard-Smithsonian Observatory is presented in this paper. Theoretically predicted and measured results in the "waterhole" band (1.4-1.7 GHz) are presented. The antenna has been utilized in the Harvard Wide-Bandwidth HighResolution Microwave Search for ExtraTerrestrial Intelligence (SETI) Program, with the Observatory as a SETI-dedicated facility.

Keywords:
SETI, Radio astronomy antennas

1. Introduction

With the increasing use of the radio spectrum for communications, navigation, and other services, the avoidance of unwanted signals is an essential practical concern in both radio astronomy and SETI. Interference poses particular problems to the radio astronomer/SETI researcher, because the signal levels from cosmic sources are much lower than the operating levels in terrestrial services. Indeed, terrestrial interference is the number one problem in SETI. The antenna system presented here is designed to reject terrestrial interference by exploiting the property that a genuine extraterrestrial transmitter must be both pointlike and exhibit sidereal rotation.

2. Antenna configuration

A two-horn feeding system, with stationary beam lobes oriented east-west, along with a third "terrestrial" low-gain antenna was built. The rationale for employing also the low-gain antenna is the following: Signals in either of the high-gain (21.0 dB) sky horns that coincide in frequency with strong signals in the terrestrial horn will be rejected outright as obvious terrestrial interference, and only the signals that traverse the east sky horn and then the west sky horn, with appropriate beam lobe intensity profiles, will be flagged as possible candidate signals and this information will be forwarded to a workstation for further processing and archival storage.

Although a pair of beams separated by several beamwidths was originally envisioned for the reflector, we have come to favor some degree of overlap (suggested by Prof. Staelin at MIT), such that the handoff from one beam lobe to the other keeps the source in sight continuously; this arrangement allows removal of ambiguities caused by fluctuating signal strengths, due to

![Diagram of antenna configuration](image-url)
implement this, two schemes were considered, namely i) multiple-feedhorn hexagonally-packed phased array (each horn could be either linear or dual-circular polarization), and ii) a simpler arrangement of two pyramidal (linear polarization) horns, aligned along their E-plane axes. The multiple-feedhorn arrangement exhibited a remarkable azimuthal symmetry of beam pattern, but would require a major (lengthy and expensive) construction effort and increase aperture blockage significantly, by contrast, the pyramidal pair (Figure 1) is sensitive to only one linear polarization, but is easy to build and test. With either scheme, we were concerned that near-field aperture interactions would cause major distortions of the far-field pattern. To explore this effect, we made some laboratory "test-range" measurements with a pair of pyramidal X-band (3-cm wavelength) horns, driven (via a magic-T hybrid) both alternately and simultaneously with Gunn oscillator sources, while scanning the far-field pattern with a small dipole connected to a spectrum analyzer. We did not observe any interaction effects at the measurement accuracy of approximately 1dB. While favoring the simplicity of the stacked pyramidal horns, we were concerned about two additional issues:

* i) does the far-field pattern have reasonable azimuthal symmetry, and

* ii) is there adequate beam overlap with separate horns (which is assured with the interleaved 7-horn array)?

To answer these questions, we performed radiation pattern calculations, starting with a pyramidal horn design whose H-plane to E-plane dimensions are in the ratio of 1.35 (this ratio produces equal -3dB beamwidths, owing to cosine taper in the H-plane field amplitude, combined with uniform field amplitude along the E-plane). We

interstellar scintillations or polarization shifts. To
assumed no feedhorn interaction, and simply calculated the far-field pattern, using the parameters of our 26-meter antenna (full-width illumination angle of 18.5 degrees). Figure 2 shows the E-plane far-field radiation pattern, from a single displaced horn, for three choices of horn aperture. In each case the horn center has been offset along the E-plane, relative to the Cassegrain axis, by half the horn aperture (i.e., stacked horns). A commonly accepted trade-off to achieve reasonable aperture efficiency (thus, also gain) while preserving low sidelobe levels in Cassegrain design is to taper the illumination to approximately -10dB, plus path-length attenuation, at the reflector edge. That corresponds to Figure 2c, producing beam overlap at the -6dB point, which also results in feedhorns that do not fit in the radome! We finally settled on the design in Figure 2b, which we estimated to have the antenna efficiency (i.e., aperture efficiency times spillover efficiency) just 0.5dB less than the ideal; its taper at the edge of the dish is -5.5dB, compared with the conventional -10dB, resulting in somewhat increased sidelobe levels. It fits in the radome if the outside corners are cut diagonally (Figure 3). The feedhorn length was chosen to produce wavefront curvature at about 0.2 by 0.3 wavelengths (E-plane by H-plane), resulting in finished feedhorns that fit in the radome with about 2 centimeters to spare (Figure 5). They are constructed of 3.2mm aluminum sheet (6061-T6), heliarc welded and joined to a WR-650 waveguide section with flange.

3. Antenna performance

We mounted the horns and performed drift scans of astronomical point sources (Sgr A, Cyg A). Figure 6...
shows such a scan. The beam shape and overlap are ideal. However, the observed signal strength was lower than expected. It was not clear whether the lower signal-to-noise ratio was due to amplifier and feed losses, or to the compromised aperture illumination. In particular, the amplifiers have been at the focus for a decade, use earlier GaAs FET technology, and their noise figure had not been recently measured. Furthermore, the new horns look through the entire radome cover, including an oblique path through the curved edges, which was never intended, the radome material itself is fiberglass, now exposed to the weather for some 20 years. On the other hand, the dual feedhorn design is novel. Thus, we did not know the relative contributions of noise temperature and aperture efficiency to the observed SNR. In the meantime, antenna pioneer Dr. John Kraus became interested in the experiments and devised a "hot load" technique by which both the system noise temperature (due to amplifier and feed losses) and the aperture efficiency could be unambiguously measured; furthermore, he even provided us with the "hot load" absorbing material needed for the measurement! The measurements were made in May 1993, comparing cold sky (with and without the radome cover installed) with the hot load absorber, and with the astronomical radio source Tau A (the Crab Nebula). The result is that the antenna efficiency (product of aperture efficiency and spillover efficiency) is as predicted - approximately 45%, compared with the usual 50% - and that the system temperature is a modest 112 Kelvin; of which 60K is likely due to uncooled GaAs amplifiers, perhaps another 30K from feedhorn losses (we noted, but could not easily remove, approximately 8-millimeter-thick "monolayer" of dead flies in the waveguide-to-coax adapter), and the rest probably coming from antenna sidelobes that illuminate the 300K environment. From the measurements, the radome appears to be entirely benign. This performance has been found satisfactory, and will be improved significantly by the new HEMT amplifiers that have now been completed. In particular, uncooled HEMTs, combined with aggressive fly removal, should trim 40K, for a system temperature of about 70K; cooled HEMTs would trim another 20K, producing the system noise temperature of 50K.

4. Conclusions

An L-band dual feedhorn for the specific purposes of microwave Search for ExtraTerrestrial Intelligence has been designed, realized, mounted and tested at the Agassiz Station-Harvard-Smithsonian Observatory. The feedhorn reduces susceptibility to terrestrial interference as well as enables segregation of the objects that do not exhibit sidereal motion over the sky. As part of a 26-meter Cassegrainian antenna (Figure 4), the feedhorn produces desired radiation characteristics and provides aperture illumination resulting in the total antenna efficiency of 45%, which is in agreement with theoretical predictions.

5. Acknowledgements

This paper summarizes a portion of the research accomplished during 1992 and sponsored primarily by The Planetary Society and NASA; other funding was provided by the Bosack/Kruger Charitable Foundation, with equipment donations from the John Fluke Company and the Hewlett-Packard Corporation. Besides the principal author of the paper, the Harvard group includes Darren Leigh, Greg Galperin, Derrick Bass and Nick Shectman. We are grateful to Michael Davis (Arecibo Observatory), Jon Hagen (NAIC), David Staelin (MIT) and Dan Werthimer (UC Berkeley) for valuable discussions. John Kraus (Ohio State University), in addition to his enthusiasm and creativity, has brought in also material as well as financial support.

About authors, ...

Paul Horowitz is Professor of Physics at Harvard University, where he teaches physics and electronics. His research interests include observational astrophysics, X-ray and particle microscopy, optical interferometry, and SETI. He is the author of some seventy papers and reports and a co-author of the book The Art of Electronics. Dr. Horowitz and his students have been involved in SETI since 1978. Their recent efforts include an 8-million-channel receiver operating at Harvard, MA, and a new 240 million-channel system soon to go on line. A twin of the 8-million-channel system was built and is operated by the Instituto Argentino de Radioastronomía at Villa Elisa, Argentina.

Martin Gimerský received the Ing. degree in electrical engineering from the Czech Technical University of Prague, Czechoslovakia, in 1988. Currently he has been working towards the completion of the Ph.D. degree in electrical engineering at the University of Victoria, Canada. His research interest include antennas, numerical methods in electromagnetic theory, and radio astronomy.