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Imaginary Part of Antenna’s Admittance 
from its Real  Part Using Bode’s Integrals 

Smain Amari. Martin Gimersky. and Jens Bomemann 

calculated from its real part using  Bode’s integrals. Since the real part 
Absfmf-The imaginary part of an antenna  input admittance is 

is typically a smoother function of the frequency than the imaginary 
part, the procedure presented here requires computation at a smaller 
number nf frequency points, thus saves  time, and is ideal for systems 
whose input conductance exhibits sharp peaks. A numerical procedure 

examples  using a wire antenna are used to illustrate the advantages 
to evaluate the singular Bode’s integral is also presented. Numerical 

of this approach compared to calculations involving a densely scanned 

demonstrated through the successful prediction of the susceptance and 
frequency range. The  noise stability and rohustness of the algorithm are 

the resonant frequencies of the antenna in the presence of random noise 
in the conductance. 

I. INTRODLCTION 
The  integral  relations  between real and imaginary parts of  response 

functions are widely used in quantum field theory, nuclear physics, 
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and solid state physics. Unfortunately, this extremely useful tool does 
not seem to find much use in  microwave  engineering. 

These  integral  relations  are  known under a  variety of names. The 
Kramers-Kronig relations between the real and imaginary  parts of 
the dielectric  constants are well  known  to  engineers  and  physicists. 
In quantum field theory and quantum many-body theory, they are 
sometimes  known as Lehmann or spectral representations  or  disper- 
sion relations [ I ] ,  whereas  mathematicians refer to them as Hilbert 
Transforms.  In circuit theory. they are often  called  Bode‘s  integrals, 
since Bode  seems  to  have been the first to use them [2]. 

Kramera-Kronig relations  enjoyed substantial popularity in the 
sixties  among researchers in  optics, where it is possible to  measure the 
imaginary part since i t  is related to light (electromagnetic) absorption 
[3]. Once  the imagindry part is known,  these  relations are used to 
calculate  the real part. Such  relations also provide a  set of constraints 
on the moments  of the functions involved as well as their asymptotic 
behavior and are very useful tools  to  check the numerical accuracy 
of the calculations [2], [4]. 

One of the most intensive numerical problems in modem  antenna 
analysis and design is the accurate calculation of the resonant 
frequency,  especially  for  antennas with sharply peaked input con- 
ductance. For such  antennas, the Imaginary part of the admittance 
oscillates violently around the resonant  frequency,  thereby  requiring 
its evaluation at a very large number  of  frequency  points in order  to 
accurately predict the location of the  resonance. Although empirically 
derived  formulas  for  admittances and resonant frequencies  of  certain 
types of antennas  exist, they are  of low accuracy (e.€., f 20% for 
helices [5]) or not known at all for  other  structures such as those 
involving anisotropic  and  lossy materials [6]. For all of  these  systems, 
however, the real part of the input admittance,  although  having  sharp 
peaks, is much easier  to  describe than its imaginaly part, hence 
requiring  fewer  computations  around the peak which  can locally be 
approximated by a Lorentzian. 

Fortunately, it is  for  these numerically demandlng situations that 
Bode’s integrals will be shown  to work beat. Indeed, the presence 
of  a  sharp peak in the real part  determines  the  local  behavior of the 
imaginary part because of the singularity in the integrand. Thus it is 
possible to reliably predict the  resonant  frequency  and  susceptance 
from  the real part without accurately reproducing the entire  frequency 
dependence of the  susceptance. 

Since the presence  of a Cauchy Principal-Value in these integral 
relations poses a numerical problem, which should be handled with 
care,  a numerical procedure using cubic splines to calculate  these 
integrals is presented. It is similar to the modified Simpson  rules 
presented in 171 but. we feel, is more  appropriate  for real life 
quantities which are  expected  to he smooth  functions. 

The paper is organized as  follows. In Section I1 we briefly review 
Bode’s integrals. Section I11 presents  a numerical procedure based 
on a  cubic-spline interpolation to calculate  the  singular  integrals 
involved. I n  Section IV, we apply the method  to  calculate the 
susceptance of a wire antenna  as  a function of frequency from its real 
part. The  obtained  results  are  compared with those obtained  from a 
direct  method-of-moments  solution. In Section V, the noise stability 
of the present technique is investigated using a  randomly  generated 
error in the real part to  simulate  measurement  errors. It is  shown 
that the first resonant frequency is adequately predicted despite the 
presence of the corrupting noisc. 

11. BODEX INTEGRALS 

The  derivation  of  Bode’s integrals ia  not presented herc. the reader 
is referred to the  literature for the details [2], [3], 181. We only 
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need to  stress  that  they apply to  any h e a r  response function of 
a physical and causal  system 181. There are situations  where  the 
presence of poles on thc  imaginary  axis  renders  the  relationship 
between  the real and imaginary  parts  nonunique [2]. Such  situations 
do not represent  physical  reality,  since  there  are  always  losses  in  the 
system  which  eliminate  such  pathologies.  Care  must,  however, be 
taken in determining what a response  function  is.  The  admittance 
of a system  represents  its h e a r  response  (current)  to an applied 
voltage.  The  causality  and  linearity of the  response  alone  guarantee 
that  the  conductance and susceptance  satisfy  the  following  integral 
relationships [ 2 ] .  181 

Here P stands for the  Cauchy  Principal-Value, C ( 3 )  is the  input 
conductance and B (  &I) the  input  susceptance.  These  two  equations 
will be referred  to  as  Bode’s  integrals [ 2 ] .  

In  this  paper  only  the first relation will be used, for thc real part 
is much smoother than the  imaginary  part,  thus  fewer  data  points 
are  needed  to  adequately  describe it. In other areas it  is usually the 
imaginary part that  enjoys  this  property, which explains why it  is this 
quantity  that  one  calculates first. In some  cases, it is also  possible  to 
measure the imaginary  part. qince it is related to the  absorption of 
the  incident  excitation,  such  as  optical  absorption,  for  example. 

To illustrate the uselulneas of these  relations, we consider a 
resistance R in series with acapacitance C‘. Without loss of generality 
we take  the  values of R and C to be unity: R = 1 and C = 1. The 
real and imaginary parts of the  admittance of this  circuit  are 

It is straightforward to check that these  two  quantities  satisfy  Bode’s 
~ntegrals. 

The situation we are  interested in involves a real  part which is 
numerically  known on a set o f  frequency  points. The conductance 
of an antenna  has  maxima  whose  sharpness is detcrmined by the q- 
factor which we define as the reciprocal of the  difference  between 
the two  half-amplitude  points in the first peak, 

Here, .r is a dimensionless  quantity,  such  as the ratio of a charac- 
teristic  length of the  antenna  (often  the  largest  dimension)  to  the 
wavelength i n  free jpace. For large values of (1. the  imaginaly  part 
oscillates  rapidly and changcs sign around the values at which the 
real part peaks.  Accurately  describing  the  imaginary  part in these 
regions  from a direct  solution can be nunlerically  costly,  because a 
large number of frequency p i n t s  is needed. In the next section we 
present a numerical  technique  to  evaluate the integral in (1) .  

111. BODE’S IhTECRALS  USING CUBIC SPLINES 

This  section  presents a technique  to  numerically  evaluate  the 
Cauchy  Principal-Value  integral in ( I ) .  Thc  idea is similar to the 

one used in deriving  the  modified  Simpson  rules  in [7], except  that a 
cubic  spline is used  for  interpolation  instead of a local  second  order 
polynomial. The use of the  cubic  spline  guarantees the  smoothness 
of the  interpolation, as the  function and its first two  derivatives are 
requircd to be  continuous [9], [IO]. 

It  is advantageous to split  the  integral  in ( 1 )  into two parts,  each 
of the  following form 

Equation ( I )  is consequently  reduced to  two integrals of the type 
given by this  last  equation, on which we now concentrate. 

A popular  numerical  integration  technique  is  the  Legendre-Gauss 
quadrature,  where  the  weights  and  the mesh on which  the  function is 
evaluated are chosen  such  that  the  technique is exact for polynomials 
up to a given order. This  technique,  which is well  suited  for  functions 
that can be approximated by polynomials, is usually used to carry  out 
the  numerical  integration  in (6) .  often  with  the  trick of subtracting 
the  singularity [ I  I]. However,  such  a  procedure  is not numerically 
stable for functions  varying  rapidly  around  the  point s [7]. Also, 
the  quadrature  approximates  the  entire integrand f(y)/(y - s) by 
polynomials;  instead, here we only  approximate  the  function f(y) 
by a cubic  spline.  It  is  much  easier to accurately  approximate f(s)  
than the  integrand.  because of the  presence of the  singularity. We 
therefore  assume  that  the  function f ( . r )  is  known  at  a  set of points 
x,, i = 1. iV, where it has  values y,. A cubic  spline  is  built  from 
these  points,  following  the  standard  procedure;  the  reader  is  referred 
to  the  literature for details [9], [lo]. Once  this is done,  the  integral 
in (6) is reduced  to  the sum of the  contributions of each  interval 
[.cg..rt+1]. The result is 

where F, ( .r ) 

The  quantities 2 ,  are the derivatives  calculated  when  constructing  the 
spline 191, 1101. 

When s is large, it is usually  advantageous to  expand the  integrand 
in (6) in powers of 1/x and  then  carry  out  the  integration,  thereby 
avoiding  roundoff  crrors, which are  dominant  because of the  strong 
cancellations  that  take  place (71. 

Iv. NUMERICAL RESULTS AND DISCUSSIOK 
In this  section we apply Bode’s integrals  to  calculate  the  suscep- 

tance of a wire antenna  from  its  conductance. We assume  a  lossless 
wire  antenna of length L fed at the  center.  The  wire of diameter 2n 
is  assumed  lossless and radiating in free  space. 
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Fig. 1. Input  conductance of a wire  antenna as a function of LIXo. q = 
11.11 (solid  line)  and q = 33.33  (dashcd line). 
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Fig. 2. Input  susceptance of a wire antenna as a function of LIXo. q = 

line is obtained  through  Bode’s  integrals. 
11.1 I. The  solid line is  the  direct  method-of-moments  solution  and  the  dashed 

The  method of moments is used to calculate the input admittance 
of the antenna a5 a  function of frequency; the code  was  checked 
again3t the results presented by Harrington in [IZ] .  Fig. I shows 
the input conductance of a dipole as a function of the ratio L/Xo 
for LrLo = 74.2 (solid line, p = I l . l l ) ,  and L/2a  = I F 4  
(dashed  line, q = 26.3). Our results for the case T,/’Ln = 74.2 
agree with those in [I21 to within the readability of the latter. 
The  conductance was calculated at 400 frequency points  in both 
cases. Fig. 2 shows the input suaceptance calculated directly using 
the  method of moments  (solid  line)  and  the  one  obtained  through 
the present technique for L/PII = 74.2. It is evident that the 
present method  fails i n  the high frequency region but approximates 
the first resonance reasonably well. The origin of the discrepancy 
can he traced back to the fact that the integral in ( I )  exrcnds 
over the entire real axis, which is not possible to incorporate  into 
the  present situation. The  agreement  improves rapidly if the real 
part is calculated  over  a wider range of frequencies. Despite this 
shortcoming, the method locates the first resonance reasonably well. 
For this case, where the peaks of the real part are not sharp, 
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Flg. 3 .  Input  susceplance of a wire  antenna as a function of L/Xo. y = 
33.33. The solid  line  is thc direct  method-of-moments  solution  and  the 
dashed  line  is  obtained  through  Bode’s  integrals,  where  the  conductance was 
calculated at 400 frequency  points. 
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Fig. 4. Input  susceptance of B wire antenna as a function of L/Xo. q = 
33.33.  The  solid  linc  is  the  direct  method-of-moments  solution and the 

calculated a[ 50 frequency  points. 
dashed  line  is  obtamed  through  Bode’s  integrals,  where  the  conductance  was 

it is possible to  approximate the real part over  a  wide range of 
frequencies without using a large number of points. thereby allowing 
the resonances to be more accurately located using the Bode’s 
integrals. The  agreement in susceptance is even much better when 
the peaks in the conductancc  are  sharper, as shown in Fig. 3. The 
solid curve  is the direct  method-of-moments  solution. Locating the 
zeros of the susceptance  directly can be very time consuming. It is 
in  this situation that the prescnt method is most useful. As Fig. 3 
shuws. the  resonances  are located within plotting  accuracy,  even 
though the  two  curves are distinct  over the region  between the 
resonances and at the right edge of the plot. The  sharper the peaks 
in the conductance. the hctter the  agreement  and consequently the 
more reliable the present method is. Our investigations have shown 
that for values of y larger than I S .  the first resonant frequency 
is predicted within plotting  accuracy if only the first peak in the 
input  conductancc is used, i.e., the range 0 <_ L / A o  5 1 in 
Fig. I .  
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Fig. 5. Input  conductance C of a wire  antenna  with f 10% ( f1 .3mS)  
of noise  superimposed.  (Note  that  negative  conductances  are  eliminated by 
settmg the respective  valucs to zero.) 
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Fig. 6. Calculated  input  susceptance 11 correspondmg  to  conductance of 
Fig. 5. The  inset  is  the  input  susceptance  calculated  from  only  the firat peak, 
0 5 L / &  5 1, of the Conductance in Flg. 5 .  

It is worth pointing out that Bode's integrals allow an adequate 
description of thc susceptance as long  as  the  conductance  is well 
described by the number  of frequency points used. Fig. 4 shows 
the susceptancc  oblained from only 50 frequency  points in the 
conductance  (dashed  line) and the method-of-moments solution (solid 
line) calculated at 400 points. It is clear that the  differcnccs  between 
the dashed curve of Fig. 3 ,  obtained from 400 points, and that from 
50 points (dashed  curve of  Fig. 4) are minor. especially  around  the 
resonant frequencies; i n  other words, the presented  example results 
in  eight-fold reduction of required CPU time. 

V. NOISE PERFORMANCE 

Successful  application of the present technique to calculate  the 
input  susceptance  from measured profiles of the input  conductance 
requires its stability to the errors inhercntly introduced by the 
measurement. To simulate  these  errors, random oscillations were 
superimposed  on the calculated  values of the conductance G. The 
oscillations represent a & 10% random error  in G. 

Fig. 5 shows a  plot of the corrupted real part of the input  ad- 
mittance  for y = 26.3. Flg. 6 shows the calculated imaginary part 
using the corrupted real part. Clearly, the resonant frequencies 
are accurately, the susceptancc satisfactorily, predicted despite the 
presence of the corrupting noise. The inset shows the imaginary 
part obtained  from only one  single peak of  the noisy real part. The 
resonant frequency  and  susceptance  are  again satisfactorily predicted 
despite the presence of the random errors and the reduced  number 
of frequency points. 

VI. CONCL~JSIONS 
Since  the real part of an antenna's  input  admittance  versus  fre- 

quency is usually a  smoother  function  than the imaginary pan, Bode's 
integrals  are  applied to significantly reduce  computation  times  for 
admittance calculations. By using a  cubic  spline interpolation for 
the conductance in the numerical integration,  the  number of actual 
input  admittance  analyses  can be reduced by at least  a  factor of 
eight-r even higher if the accuracy in the susceptance function 
is slightly sacrificed-while still satisfactory results are  obtained  for 
the resonances  (zeros of susceptance).  The algorithm is robust in the 
presence  of random noise and can therefore be used to  validate or 
improve  measurements. 
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