220 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 43, NQ. 2, FEBRUARY 1995

[51 P. L. Overfelt, Superspheroid Geometries for Radome Analysis. China
Lake, CA: Naval Air Warfare Center Weapons Division, Technical
Publication 8216, Aug. 1994,

, Computer Codes for Electromagnetic Design and Analysis of
Radomes. China Lake, CA: Naval Weapons Center, Technical Pub-
lication 6598, Mar. 1985,

[7] P. L. Overfelt, C. S. Kenney, D. J. White, and W. O. Alltop, Radome
Analysis and Design Tool (Final Report). China Lake, CA: Naval Air
Wartare Center Weapons Division, Technical Publication 8171, Nov.
1993.

[8] P. L. Overfelt, “Two-dimensional radoeme modelling: A boundary per-
turbation approach,” in 1984 IEEE Int. Symp. Dig. Antennas Propagat..,
June 1984, pp. 201-205.

[9] P. L. Overfelt and D. J. White, “Electromagnetic analysis of radomes

using a spherical wave point dipole source array technique,” in 2/st

Symp. Electromagnetic Windows Dig., Scpt. 1988, pp. 11-25.

D. C. F. Wu and R. C. Ruddock, “Plane wave spectrum-surface integra-

tion technique for radome analysis,” IEEE Trans. Antennas Propagat.,

vol. AP-22, pp. 497-500, May 1974.

K. Siwiak, T, B. Dowling, and L. Lewis. “Boresight errors induced

by missile radomes,” [EEE Trans. Antennas Propagat., vol. AP-27, pp.

832-841, Nov. 1979.

J. H. Chang and K.-K. Chan, “Analysis of a two-dimensional radome

of arbitrarily curved surface,” IFEE Trans. Antennas Propagat., vol. 38,

pp. 1565-1568, Oct. 1990.

X.J. Gao and L. B, Felsen, “Complex ray analysis of beam transmission

through two-dimensional radomes,” JEEE Trans. Antennas Propagat.,

vol. AP-33, pp. 963975, Sept. 1985,

C. T. Tai, Generalized Vector and Dyadic Analysis.

Press, 1992.

D. J. Struik, Differential Geometry.

1950.

A. G. Hansen, Similarity Analyses of Boundary Value Problems in

Engineering. Englewood Cliffs, NJ: Prentice-Hall, 1964,

J. M. H. Olmsted, Advanced Calculus. New York: Appleton, Century,

Crofts, 1961, ¢h. 16.

M. Becker, The Principles and Applications of Variational Methods.

Cambridge, MA: MIT Press, 1964, ch. 3.

16]

(1o
[BRY
(12]
[13]

[14] New York: [EEE

[15] Cambridge, MA: Addison-Wesley,

[16]
[171

{18]

Imaginary Part of Antenna’s Admittance
from its Real Part Using Bode’s Integrals

Smain Amari. Martin Gimersky, and Jens Bornemann

Abstract— The imaginary part of an antenna input admittance is
calculated from its real part using Bode’s integrals. Since the real part
is typically a smoother function of the frequency than the imaginary
part, the procedure presented here requires computation at a smaller
number of frequency points, thus saves time, and is ideal for systems
whose input conductance exhibits sharp peaks. A numerical procedure
to evaluate the singular Bode’s integral is also presented. Numerical
examples using a wire antenna are used to illustrate the advantages
of this approach compared to calculations involving a densely scanned
frequency range. The noise stability and robustness of the algorithm are
demonstrated through the successful prediction of the susceptance and
the resonant frequencies of the antenna in the presence of random naise
in the conductance.

I. INTRODUCTION

The integral relations between real and imaginary parts of response
functions are widely used in quantum field theory, nuclear physics,
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and solid state physics. Unfortunately, this extremely useful tool does
not seem to find much use in microwave engineering.

These integral relations are known under a variety of names. The
Kramers—Kronig relations between the real and imaginary parts of
the dielectric constants are well known to engineers and physicists.
In quantum field theory and quantum many-body theory, they are
sometimes known as Lehmann or spectral representations or disper-
sion relations [1], whereas mathematicians refer to them as Hilbert
Transforms. In circuit theory, they are ofien called Bode's integrals,
since Bode seems to have been the first to use them [2].

Kramers—-Kronig relations enjoyed substantial popularity in the
sixties among researchers in optics, where it is possible to measure the
imaginary part since it is related to light (electromagnetic) absorption
[3]. Once the imaginary part is known, these relations are used to
calculate the real part. Such relations also provide a set of constraints
on the moments of the functions involved as well as their asymptotic
behavior and are very useful tools to check the numerical accuracy
of the calculations [2], [4].

One of the most intensive numerical problems in modern antenna
analysis and design is the accurate calculation of the resonant
frequency, especially for antennas with sharply peaked input con-
ductance. For such antennas, the imaginary part of the admittance
oscillates violently around the resonant frequency, thereby requiring
its evaluation at a very large number of frequency points in order to
accurately predict the location of the resonance. Although empirically
derived formulas for admittances and resonant frequencies of certain
types of antennas exist, they are of low accuracy (e.g., = 20% for
helices [5]) or not known at all for other structures such as those
involving anisotropic and lossy materials [6]. For all of these systems,
however, the real part of the input admittance, although having sharp
peaks, is much easier to describe than its imaginary part, hence
requiring fewer computations around the peak which can locally be
approximated by a Lorentzian.

Fortunately, it is for these numerically demanding situations that
Bode’s integrals will be shown to work best. Indeed, the presence
of a sharp peak in the real part determines the local behavior of the
imaginary part because of the singularity in the integrand. Thus it is
possible to reliably predict the resonant frequency and susceptance
from the real part without accurately reproducing the entire frequency
dependence of the susceptance.

Since the presence of a Cauchy Principal-Value in these integral
relations poses a numerical problem, which should be handled with
care, a numerical procedure using cubic splines to calculate these
integrals is presented. It is similar to the modified Simpson rules
presented in {7] but, we feel, is more appropriate for real life
quantities which are expected to be smooth functions.

The paper is organized as follows. In Section II we briefly review
Bode’s integrals. Section III presents a numerical procedure based
on a cubic-spline interpolation to calculate the singular integrals
involved. In Section IV, we apply the method to calculate the
susceptance of a wire antenna as a function of frequency from its real
part. The obtained results are compared with those obtained from a
direct method-of-moments solution. In Section V, the noise stability
of the present technique is investigated using a randomly generated
error in the real part to simulate measurement errors. It is shown
that the first resonant frequency is adequately predicted despite the
presence of the corrupting noisc.

II. BODE'S INTEGRALS

The derivation of Bode’s integrals is not presented here, the reader
is referred to the literature for the details [2], [3], [8]. We only
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need o stress that they apply to any linear response function of
a physical and causal system [8]. There are situations where the
presence of poles on the imaginary axis renders the relationship
between the real and imaginary parts nonunique [2]. Such situations
do nor represent physical reality, since there are always losses in the
system which climinate such pathologies. Care must, however, be
taken in determining what a response function is. The admittance
of a system represents its linear response {(current) to an applied
voltage. The causality and linearity of the response alone guarantee
that the conductance and susceptance satisfy the following integral
relationships (2], [8]
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Here P stands for the Cauchy Principal-Value, G(w) is the input
conductance and B(w) the input susceptance. These two equations
will be referred to as Bode’s integrals [2].

In this paper only the first relation will be used, for the real part
is much smoother than the imaginary part, thus fewer data points
are needed to adequately describe it. In other areas it is usually the
imaginary part that enjoys this property, which explains why it is this
quantity that one calculates first. In some cases, it is also possible to
measure the imaginary part, since it is related to the absorption of
the incident excitation, such as optical absorption, for example.

To illustrate the usefulness of these relations, we consider a
resistance K in series with a capacitance (". Without loss of generality
we take the values of R and (' to be unity: R =1 and C' = 1. The
real and imaginary parts of the admittance of this circuit are

9
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It is straightforward to check that these two quantities satisfy Bode's
integrals.

The situation we are interested in involves a real part which is
numerically known on a set of frequency points. The conductance
of an antenna has maxima whose sharpness is determined by the g-
factor which we define as the reciprocal of the difference between
the two half-amplitude points in the first peak,

Here, . is a dimensionless quantity, such as the ratio of a charac-
teristic length of the antenna (often the largest dimension) to the
wavelength in free spuce. For large values of ¢, the imaginary part
oscillates rapidly and changes sign around the values at which the
real part peaks. Accurately describing the imaginary part in these
regions from a direct solution can be numerically costly, because a
larpe number of frequency points is needed. In the next section we
present a numerical technique to evaluate the integral in (1).

III. BODE'S INTEGRALS USING CUBIC SPLINES

This section presents a technique to numerically evaluate the
Cauchy Principal-Value integral in {1). The idea is similar to the

one used in deriving the modified Simpson rules in [7], except that a
cubic spline is used for interpolation instead of a local second order
polynomial. The use of the cubic spline guarantees the smoothness
of the interpolation, as the function and its first two derivatives are
required to be continuous [9], [10].

It is advantageous to split the integral in (1) into two parts, each
of the following form
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Equation (1) is consequently reduced to two integrals of the type
given by this last equation, on which we now concentrate.

A popular numerical integration technique is the Legendre-Gauss
quadrature, where the weights and the mesh on which the function is
evaluated are chosen such that the technique is exact for polynomials
up to a given order. This technique, which is well suited for functions
that can be approximated by polynomials, is usually used to carry out
the numerical integration in (6), often with the trick of subtracting
the singularity [11]. However, such a procedure is not numerically
stable for functions varying rapidly around the point z [7]. Also,
the quadrature approximates the entire integrand f(y)/(y — x) by
polynomials; instead, here we only approximate the function f(y)
by a cubic spline. It is much easier to accurately approximate f(x)
than the integrand, because of the presence of the singularity. We
therefore assume that the function f(.r) is known at a set of points
2,1 = 1, N, where it has values y;. A cubic spline is built from
these points, following the standard procedure; the reader is referred
to the literature for details [9], [10]. Once this is done, the integral
in (6) is reduced to the sum of the contributions of each interval
[;t‘,,.‘l'g+1]. The result is
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The quantities z; are the derivatives calculated when constructing the
spline [9], [10].

When « is large, it is usually advantageous to expand the integrand
in (6) in powers of 1/x and then carry out the integration, thereby
avoiding roundoff crrors, which arc dominant because of the strong
cancellations that take place [7].

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we apply Bode’s integrals to calculate the suscep-
tance of a wire antenna from its conductance. We assume a lossless
wire antenna of length L fed at the center. The wire of diameter 2a
is assumed lossless and radiating in free space.
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Fig. 1. Input conductance of a wire antenna as a function of L/Xo. ¢ =
11.11 (solid line) and ¢ = 33.33 (dashed line).
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Fig. 2. Input susceptance of a wire antenna as a function of L/Aq. ¢ =
11.11. The solid line is the direct method-of-moments solution and the dashed
line is obtained through Bode’s inlegrals.
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The method of moments is used to calculate the input admittance
of the antenna as a function of frequency; the code was checked
against the results presented by Harrington in [12]. Fig. | shows
the input conductance of a dipole as a function of the ratio L/\g
for L/2a = 74.2 (solid line, ¢ = 11.11), and L/2¢ = 104
(dashed line, ¢ = 26.3). Our results for the case I/2a = 742
agree with those in [12] to within the readability of the latter.
The conductance was calculated at 400 frequency points in both
cases. Fig. 2 shows the input susceptance calculated directly using
the method of moments (solid line) and the one obtained through
the present technique for L/2« = 742, It is evident that the
present method fails in the high frequency region but approximates
the first resonance reasonably well. The origin of the discrepancy
can be traced back to the fact that the integral in (1) extends
over the entire real axis, which is not possible to incorporate into
the present situation. The agreement improves rapidly if the real
part is calculated over a wider range of frequencies. Despite this
shortcoming, the method locates the first resonance reasonably well.
For this case, where the peaks of the real part are not sharp,
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Fig. 3. Input susceptance of a wire antenna as a function of L/Ag. ¢ =
33.33. The solid line is thc direct method-of-moments solution and the
dashed line is obtained through Bode’s integrals, where the conductance was
calculated at 400 frequency points.
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Fig. 4. Input susceptance of a wire antenna as a function of L/Ag. ¢ =
33.33. The solid linc is the direct method-of-moments solution and the
dashed line is obtained through Bode’s integrals, where the conductance was
calculated at 50 frequency points.

it is possible to approximate the real part over a wide range of
frequencies without using a large number of points, thereby allowing
the resonances to be more accurately located using the Bode’s
integrals. The agreement in susceptance is even much better when
the peaks in the conductance are sharper, as shown in Fig. 3. The
solid curve is the direct method-of-moments solution. Locating the
zeros of the susceptance directly can be very time consuming, It is
in this situation that the present method is most useful. As Fig. 3
shows, the resonances are located within plotting accuracy, even
though the two curves are distinct over the region between the
resonances and at the right edge of the plot. The sharper the peaks
in the conductance, the better the agreement and consequently the
more reliable the present method ts. Our investigations have shown
that for values of ¢ larger than 15, the first resonant frequency
is predicted within plotting accuracy if only the first peak in the

input conductance is used, i.e., the range 0 < L/A < 1 in
Fig. 1.
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Fig. 5. Input conductance G of a wirc antenna with + 10% (£1.3mS)

of noise superimposed. (Nole that negative conductances are eliminated by
setting the respective values to zero.)
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Fig. 6. Calculated input susceptance B corresponding to conductance of

Fig. 5. The inset is the input susceptance calculated from only the first peak,
0 < L/Xy < 1, of the conductance in Fig. 5.

It is worth pointing out that Bode’s integrals allow an adequate
description of the susceptance as long as the conductance is well
described by the number of frequency points used. Fig. 4 shows
the susceptance obtained from only 50 frequency points in the
conductance {dashed line) and the method-of-moments solution (solid
line) calculated at 400 points. It is clear that the differences between
the dashed curve of Fig. 3, obtained from 400 points, and that from
50 points (dashed curve of Fig. 4) are minor, especially around the
resonant frequencies; in other words, the presented example results
in eight-fold reduction of required CPU time.

V. NOISE PERFORMANCE

Successful application of the present technique to calculate the
input susceptance from measured profiles of the input conductance
requires its stability to the errors inherently introduced by the
measurement. To simulate these errors, random oscillations were
superimposed on the calculated values of the conductance G. The
oscillations represent a + 10% random error in G.

Fig. 5 shows a plot of the corrupted real part of the input ad-
mittance for ¢ = 26.3. Fig. 6 shows the calculated imaginary part
using the corrupted real part. Clearly, the resonant frequencies
are accurately, the susceptance satisfactorily, predicted despite the
presence of the corrupting noise. The inset shows the imaginary
part obtained from only one single peak of the noisy real part. The
resonant frequency and susceptance are again satisfactorily predicted
despite the presence of the random errors and the reduced number
of frequency points.

VI. CONCLUSIONS

Since the real part of an antenna’s input admittance versus fre-
quency is usually a smoother function than the imaginary part, Bode's
integrals are applied to significantly reduce computation times for
admittance calculations. By using a cubic spline interpolation for
the conductance in the numerical integration, the number of actual
input admittance analyses can be reduced by at least a factor of
eight—or even higher if the accuracy in the susceptance function
is slightly sacrificed—while still satisfactory results are obtained for
the resonances (zeros of susceptance). The algorithm is robust in the
presence of random noise and can therefore be used to validate or
improve measurements.
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