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Fig. 5 .  Resistive-layer  deposition  patterns. The pattern on the  right has 
overlaps;  the pattern at  left has none. 

be  achieved by depositing half the  pattern  elements  on  one  side of 
the  film and the  other half on  the  other side. 

V. CONCLUSIONS 
The  fact  that  capacitive  impedance  sheets  can  reduce  the  overall 

thickness  and  improve  the  bandwidth  of  Jaumann  absorbers  is  not 
new,  nor  are  the  single-frequency  notch  design  requirements,  namely 
that r and its derivatives  vanish  at  the  single  notch.  What we 
have  illustrated  here is a  double-notch  design  approach  in  which 
r is  forced to  zero  at  two  frequencies  instead of one.  Unlike  the 
single-notch  design  requirement,  which  generates  a  pair of equations 
whose  solution  is  analytically  tractable,  at  least  for  two or three 
sheets,  the  double-notch  design  requirement  generates  four  second- 
degree  equations  in  four  unknowns,  the  solution of which is more 
troublesome. We relied  here  on  a  numerical  minimization  scheme  to 
solve  that  system of equations. 

The solution  confirmed  our  hunch  that  the  bandwidth of the  double- 
notch  design  increases  as  the  notch  frequencies  are  spread  further 
from  the  center  frequency.  The  notches  cannot  be  spread  too  far  apart, 
however, lest the  central peak rise  above  the -20  dB performance 
floor  we  arbitrarily  imposed at the  outset.  The  maximum  notch 
displacement  can  be no more  than  4 1 % for this particular  performance 
level. 

Thus, if we  take  the  trouble to attempt to find a  solution,  even if 
it  demands  the  use of brute-force  numerical  methods, we  find that 
we  can  expand  the  bandwidth  considerably  over  that  available  from 
the  single-notch  design  approach. We showed  that  a  capacitive  two- 
sheet  double-notch  Jaumann  absorber  can  have  a  20-dB  bandwidth of 
108% if the  sheet  spacing  is  fixed at 0.1875Xo at the  center  frequency. 
And  although  laboratory tests of one  design  did  not  have  the  deep 
notches  exhibited  by  our  numerical  design, its bandwidth  was  also 
about  108%. 

The  optimum  two-sheet  double-notch  design  therefore has more 
than  four  times  the  bandwidth  of  the  classic  Salisbury  screen,  but 
is only 1.5 times  as  thick. And although  the  double-notch  design is 
more  complicated,  it  can  probably  be  implemented  with very little 
effort  using  circuit-analog  design  tools  and  equipment. 
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Efficient  Numerical  Computation of Singular 
Integrals  with  Applications  to  Electromagnetics 

Smain  Amari  and  Jens  Bornemann 

Abstract-Efficient  schemes to accurately  compute  singular  integrals 
are  presented.  The  singularity is removed  prior to numerical  integration, 
using  a  change of variables,  integration by parts, or a  combination  of 
both. A change  of  variables  eliminates  power-law  singularities  of the 
type a < 1 and renders  the  integrand  well  behaved.  Similarly, 
a  logarithmic  singularity of  the form In z is eliminated  either by direct 
integration by parts or by multiplying  and  dividing  the  integrand by 
In z followed by integration by parts.  Cauchy-type  singularities  are also 
removed by integrating  the  singular  term by parts  twice.  In all cases,  the 
remaining  integrand is well  behaved  and  lends  itself  to  straightforward 
numerical  integration.  The  technique is applied  to  scattering  from  a 
perfectly  conducting  cylinder.  Comparison of  the numerical  and  exact 
solutions  show  the  stability  of  the  technique. 

I. INTRODUCTION 
Many  phenomena in engineering and physics  are  described by 

integral  equations  whose  kernel  often  involves  singularities of varied 
degrees.  Integral  formulations  in  electromagnetic  problems,  through 
Green’s  functions,  require  evaluation of singular  integrals.  The 
method of moments  is  a  typical  method  which  involves  evaluation 
of  singular  integrals,  especially  the  self-terms [l], [2]. Singh  and 
Singh  used  the  tanh  map to transform  a  singular  integral  over  a finite 
interval [a ,  b] into  a  rapidly  decreasing  improper  integral  extending 
from -cc to +cc [3]. 

A  popular  method of evaluating  singular  integrals  numerically 
consists of isolating  the  singularity  while  using  the  Gauss  quadrature 
method [4].  In this  method,  the  integration  is  taken  from a + 6 to b 
instead  of  from a to b where a and b are  the  limits of integration,  and 
the  integrand  is  singular  at  the  point a.  Increasingly  smaller  values 
of 6 are  taken  until  an  acceptable  accuracy  is  achieved. A second  ap- 
proach  consists  in  subtracting,  from  the  original  integrand,  a  singular 
function  whose  antiderivative  is  known  and  which  approaches  the 
integrand  in  the  neighborhood of the  singularity [ 5 ] .  A drawback of 
this  method is the  fact  that it involves  subtraction  of  numbers  which 
can be extremely  large,  for  the  function  is  singular, and may  lead to 
erroneous  results if higher  accuracy  is  required. 
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Power-law  singularities  can be integrated  through  a  change of 
variables  whereby  the  singularity  is  eliminated [6]. Also,  open 
formulas  tailored to a  host of singularities  can  be  derived [6]. The 
singularity  is,  however, still present in this last approach. 

In  this  paper,  we  present  simple  techniques  which  are  applicable  to 
a  variety of singularities  encountered  in  modeling of electromagnetic 
fields. The  approach  presented  here  always first removes  the  singu- 
larity and  then  carries  out  numerical  integration  on  the  remaining 
well-behaved  integrand.  Logarithmic  singularities  are  handled  using 
integration by parts  until  the  singularity  is  removed.  Integration  by 
parts is also  efficient  in  accurately  evaluating  singularities of the 
Cauchy  type. 

Two-dimensional  scattering  problems  in  electromagnetics  involve 
Hankel  functions  which  are  singular at the  origin. To test the 
numerical  stability of the  algorithms  presented  here, the induced 
current  density on a  perfectly  conducting  cylinder  is  calculated 
through  the  method of moments  and  compared to the  analytical 
solution. We show  that  the  numerical  solution  converges to the  exact 
current  distribution  as  the  number of basis  functions is increased. 

11. POWER-LAW  SINCULARITIES 
In  this  section  we  show  how  power-law  singularities of the  form 

x-OL, cy < 1 can  be  treated.  The  case a = 1, which  roughly 
corresponds to Cauchy  singularities  where the integral  is  interpreted 
in  the  sense of its  principal  part, is treated  separately. 

Consider  the  following  integral 

The  function f (x) is  assumed  singular  at  the  point z = a where 
it  can  be  approximated by Cz-" where C is  a  constant  and a a 
parameter  which  determines  the "order"  of the  singularity.  The  case 
where  the  function  is  singular  at  both  end-points  can  be  treated by 
dividing  the  interval [a,  b] into  two  subintervals  and  treating  each 
one of them  separately.  There is, therefore, no loss of generality  in 
our assumption. We also  take a to  be zero and b = 1; this  can  always 
be  done  using  a  linear  transformation.  The  change of variables 

allows us to  rewrite  the  integral I1 as [6] 

It can be seen  easily  that  the  singularity  is  now  eliminated  from 
the  integrand;  standard  Gauss  quadratures  can  be  used to accurately 
and  efficiently  evaluate  it if f(z) is  any  given  function  exhibiting  a 
power-law  singularity. As a  typical  example,  consider  the  case  where 
f(z) = l/&. Using (3) with a = 1/2, the  exact  result  follows 
straightforwardly 

Il =l - =  - 1 - t d t = 2 .  ' d z  1 1 
f i f  dF 

The  same  transformation  can  also  be  used to evaluate  singular 
integrals  whose  behavior at one  end-point is the  product  of  a  natural 
logarithm  and  a  term zPa .  This  is  the  case of In ( z ) / f i ,  for  example. 
Since  the  singularity  in l/& is  stronger  than  the  logarithm,  the 
change of variable  used  above  also  eliminates  the  singularity.  In  this 

specific  example,  the  integrand  is  transformed to 

which  is  again  well  behaved  and  can be straightforwardly  integrated. 
The  case of isolated  logarithmic  singularities, Le., where  the  function 
behaves  as In (z), z + O+ cannot be treated by this  change of 
variables. It is discussed  in  the  next  section. 

111. LOGARITHMIC SINGULARITIES 

Consider  a  singular  integral  where  the  integrand  has  a  logarithmic 
singularity at z = 0 

12 = f(z) dz, f(z) N In I. x -+ O+.  (6) 

Because of the  singularity,  direct  numerical  integration,  especially 
for  those  methods  using  end-points, will certainly fail. It is very 
important  in all cases of singular  integrals to first attempt to eliminate 
the  singularity  since  it is assumed  to  be  integrable.  For this particular 
case,  an  integration by parts  along with an  appropriate  splitting  of 
the  original  interval of integration  lead  to  a  well-behaved  integrand. 
Since  the  singularity is present  only  at z = 0, we  concentrate  on  the 
interval [0, OS]. The  threshold 0.5 was  chosen so it would  not  hit 
the  zero of the  logarithm;  this  becomes  clear  shortly. We rewrite  the 
corresponding  contribution to (6) in  the  following  form 

Note  that  the  quantity  in  brackets is well  behaved at z = 0, the 
singularity  having  been  incorporated  in  the last logarithm  term. It is 
now  also  evident why the  point x = 1 has  been  avoided.  A  simple 
integration by parts  leads to 

Again,  the  singularity  has  been  removed,  since  the  integrand  in (8) 
is finite at z = 0. If (8) is  applied  to  the  function f ( ~ )  = 1x1 I, the 
second  term  vanishes,  leading  to  the  exact  result  without  any  need 
for  numerical  integration. It is this feature of analytically  including 
as  much of the a priori knowledge we have  about  the  integrand  that 
makes  the  present  approach  powerful. 

It is also  possible  to  eliminate  the  logarithmic  singularity by direct 
integration by parts. If the  integrand  in (6) is  written as the  product 
of unity (1)  and f(.c), then  integration by parts  leads  to 

Since  the  function f(z) approaches In (x) as x approaches  zero, 
both  terms in (9) are  well  defined. 

A  different  type of singularity  that  is  often  encountered  is  the 
Cauchy  principal  value  integral  which  in  rough  terms  corresponds 
to cy = 1 in (3). Obviously  the  change  of  variables  utilized  above 
fails  [see (3)]. Again  integration by parts  can  be  fruitfully  used  in 
this  situation. 

IV.  CAUCHY-TYPE  SINGULARITIES 
In  a  Cauchy-type  singularity,  the  integral  is  interpreted  as  a 

principal part. There  are  a  number of techniques to evaluate  this 
type of singular  integrals  with  varied  degrees of accuracies.  Gauss 
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quadratures  are  often  used  along  with  the  trick of subtraction of 
singularity [5]. It is  also  possible to set up quadratures, by a  proper 
choice of mesh  points  and  weights,  which  are  exact  for  polynomials 
of a given  order [5]. An alternative  approach  consists  in  expanding 
the  function  in  a  Taylor  series  around  the  singularity [x = y in 
(10)  below].  The  following  discussion  assumes  that  the  function 
f(z) is  a  known  smooth  function  in  the  sense  that its first and 
second  derivatives are finite in  the  interval [a, b]. The  important  case 
where  the  function  is  known  only  numerically,  either  from  previous 
numerical  computation  or  measurement,  can  be  handled  adequately 
using  substitutional  formulas [7], [SI; this  case  is  not  covered  here. 

Consider  the  integral 

b 

13(y) = P Jr: Z d z .  

Here, P denotes  the  Cauchy  principal  value.  The  function f(z) is 
assumed  well  behaved  such  that  the  integral  exist  for  values of y 
in  the  interval [a, b]. Following  the  present  approach,  we first try 
to eliminate  the  singularity  and  only  then  carry  out  the  numerical 
integration.  An  integration by parts  leads to 

13(y) = In IZ - Y I  f (x)1;  - In Iz - Y I  f(z) 'dz.  (11) 

If the  derivative f(z)' vanishes at x = y, the  integrand in this 
equation  is no longer  singular,  and  numerical  integration  can be used 
at this  stage. If this  is  not  the  case,  then  a  second  integration by 
parts  is  necessary to eliminate  the  singularity.  The  second  derivative 
of f (x) is now  needed, but the  elimination of the  singularity  far 
outweighs  the  effort  that  goes  into  evaluating  the  second  derivative. 
For  such  a  situation,  the  integral  is  rewritten  as 

. I b  

1 3 ( Y )  = In 12 - Y l  m l :  
- [(X - Y) In (. - Y) - (x - Y)l f ( 4 ' t  

+ [(x - y) In 12 - 3 1 1  - (z - y)] f ( z ) " d x .  (12) 

Unless  generated by the  second  derivative,  the  singularity  at z = y 
is  now  eliminated  since  the  integrand  is  well  behaved. If the  present 
approach  is  applied to a  polynomial,  (12)  always  leads to stable 
numerics. It is  even  possible  to  render  the  integrand  in  the  remaining 
integral  in (12) smoother by subtracting  the  quantity f(y)" (the 
second  derivative of f(x) evaluated  at z = y) from  the  integrand 
such  that  both  terms  in  the  integrand  vanish  as z approaches y. 

Another  singularity  which  is  often  encountered  in  electromag- 
netics,  especially  in  planar circuits, is  the  Maxwellian  singularity 
1/1/=. This  case  is  simply  handled  through  the  change  of 
variables 

x = sin (e ) .  (13) 

The  remaining  integrand  is  again  well  behaved  and  poses  no  sig- 
nificant stability problems.  Note  also  that this last singularity  can 
be  efficiently  dealt  with  using  Gauss-Chebychev  quadratures  whose 
weight  function  is l / d m  [6]. 

V. NUMERICAL RESULTS 

The approach  presented  here is first applied  to  an  integral  which  has 
both a power-law  and  a  logarithmic  singularity.  This is the  example 
discussed  in [3], namely  the  evaluation  of  the  following  integral 

-9: io io 30 40 so a0 
no. points 

3 

Fig. 1. Error in evaluating  the  integral 12 (16) for  different  numbers of 
integration  points.  The  circle is from [3], the crosses from the present  work. 

-0.5 0 0.5 1 
Y 

Fig. 2. Error in the  principal part of f(z) = x4 - 1, 1x1 5 1 for 16 (dotted 
line) and 96 (solid  line)  integration  points. 

Applying  the  change of variables  discussed  above,  we  rewrite  this 
integral  as 

I1 = 4 1' In x dx. (15) 

Equation  (15)  has  a  logarithmic  singularity  which is removable by 
integrating by parts.  This  leads to the  exact  answer 11 = -4. This 
simple  example  shows  that  an  attempt  to  remove  the  singularity  led 
directly  to  the  exact  answer.  Obviously  in  more  complex  situations 
the  singularity  will  be  removed,  but  the  exact  answer  is  not  expected. 
As a  second  example, we compute  the  integral IZ in [3] using  the 
change of variables  in (13). IZ is  given by 

=- -&( lo) .  7r 

2 
Here 2'2 (z) is  the  second-order  Chebychev  polynomial, and JZ (x) is 
the  second-order  Bessel  function  of  the first kind.  Fig. 1 shows  the 
variation of the  error  as  the  number of integration  points is changed. 
The  circle  is  the  minimum  error  from [3] for N = 15 and  the  crosses 
are  from  the  present  work for N = 8, 16, 24, 32, and 64. Clearly  the 
elimination  of  the  singularity  not  only  stabilizes  the  computation  but, 
in  this  case at least, converges  rapidly to the  exact  answer. As a  third 
example,  the  method used in  eliminating  the  Cauchy-type  singularity 
is  applied to the  function f(z) = x4 - 1, 1x1 5 1. The  corresponding 
integral  can  be  calculated  exactly  and  is  given by 

dx = 2y3 + - 2 y + (y4 - 1) In 
3 
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Fig. 3. Imaginary  part of the  integral  in (19) as  a  function of L. The  small-argument  approximation [2] (dashed  line)  and  the  present work (solid  line). 
Same  integral  using  two  points  (inset  dotted  line)  and 32 points  (solid  line)  in the  Gauss  quadratures. 

Fig.  2  shows  the  error  for  16  and 96 integration  points  in  Gauss  (1);  this  amounts to a  simple  scaling  operation.  Integration by parts 
quadratures  through  (12)  as  a  function of y in  the  range [- 1, 11. gives 
The  error  consistently  decreases  as  the  number of integration  points 
increases.  Further  increase  did  not  affect  the  stability of the  results S = x H i 2 ) ( x ) I t  - x H i 2 ) ( x ) ’  dx. 

Note  that  the  trick  of  subtracting  the  singularity  along  with  Gauss 
quadratures  gives  the  exact  result when the  function f(x) is a  Using  the  identity H!2)(z ) ‘  = - H , ( 2 ) ( S )  and  the  fact  that xHi2) (L)  
polynomial,  and  enough  points  are  used  as  long  as  the  points  falling vanishes in the limit o, we get 
close to the  singularity  are  properly  handled.  Otherwise,  the  trick of 

as  expected  from  the  fact  that  the  singularity  has  been  removed. 1‘ (21) 

subtracting  the  singularity  amounts to computing  the  ratio 

which  is  not  stable  in  the  limit z -+ y [9]. 
The final example  is  a  singular  integral  which  appears  in  the 

method-of-moments  solution to two-dimensional  electromagnetic 
problems,  especially  in  the  surface  integral  equation  approach.  Indeed 
the  problem  of  scattering  from  a  conducting  cylinder  involves  self- 
terms  which  require  the  evaluation of the  singular  integral [2, pp. 
184, 2211 

Here Hz(x) is  the  Hankel  function  of  the  second  kind of order  zero. 
For  small  values of L,  more  precisely  of  the  product koL, the  small- 
argument  approximation of the  Hankel  function  is  used to evaluate 
S leading to  the  following  imaginary  part  [2, p. 1851 

%[SI = --LFll 7r 2 (T) - 11 

s = L H i 2 ) ( L )  + z H $ Z ) ( x ) d s .  LL (22) 

It can  be  seen  easily  that  the  remaining  integrand  is now well  behaved 
since  the  term x cancels  the  singularity in the  Hankel  function of the 
second  kind of order 1, H,(’)(x). 

Fig.  3  shows  a  plot of the  imaginary  part of S evaluated  using  the 
present  approach  (solid  line)  and  the  method  used  in  [2]  (dotted line). 
It can  be  seen  clearly  that  the  two  techniques  coincide  for  values of 
L smaller  than  about  0.4.  For L larger  than 0.4, the  small-argument 
approximation  in [2] fails and produces  up to 11% higher  values 
(at L = 1) than our numerical  integration  technique  which is valid 
for all values  of L. The  inset  in Fig. 3  illustrates  the  convergence 
and  stability of the  method  based  on  removing  the  singularity  before 
numerical  integration. The dotted  line  depicts  the  imaginary  part 
obtained  from  only  two  points  in  the  Gauss  quadrature  and  the  solid 
line  from 32 points.  The  difference  between  the  two is minimal for 
0 5 L 5 1. In  addition,  the  numerical  stability of the  technique 
based  on  the  removal of the  singularity  allows  us to test the  accuracy 
of the  small-argument  approximation  used  in  evaluating this type of 
singular  integrals. 

where y = 1.781 is Euler’s  constant  (In y = 0.5772).  VI. APPLICATION TO SCATTERING FROM A CYLINDER 

The  logarithmic  singularity  in  the  integrand  in  (19)  can  be  removed As an  application of the  schemes  presented  here,  the  induced 
using  the  methods  presented  here.  For  simplicity  we  set ko to unity current  distribution  on  a  perfectly  conducting  cylinder of ra- 
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Fig. 4. Real and imaginary parts of the current  density induced by an incident TM plane wave polarized  along the axis of the cylinder for a = X/4. X/2,  
and X: (a) real part and (b) imaginary part. 

dius a is calculated  through  a  method-of-moment  solution.  The cylinder is considered.  The  structure is shown in  the inset in 
case of a TM incident  wave  polarized  along  the  axis of the Fig. 4. 



1348 IEEE  TRANSACTIONS ON ANTENNAS  AND PROPAGATION. VOL. 43, NO. 11. NOVEMBER 1995 

The  induced  current  density  on  the  cylinder  is  easily  shown to 
satisfy  the  following  integral  equation [ l ,  p.  421 

where El is  the  incident  electric  field and J ,  the  induced  current 
density. If E: is taken  as  a  plane  wave  propagating  along  the z-axis, 
namely 

E’ - , - i k x  
2 -  (24) 

then  an  exact  analytical  solution  is  known and is given by [lo, p.  2331 

The  circumference of the  cylinder  is now divided  into N equal 
sectors  centered at 4, = [2r(n - 1)/N]. A  pulse  function  is  assumed 
on each  sector.  The  method of moments  solution to (23)  is  then 
reduced  to  a  matrix  equation  relating  the  expansion  coefficients of 
the  current  density to  the  incident  electric field through  an  impedance 
matrix  whose  entries  are 

Using  polar  coordinates, I,, can  be  rewritten  as 

The  integrand  in  (27)  has  a  logarithmic  singularity  as 4 approaches 
d m .  The  techniques of Section 111 and (20)-(22) are  now  applied  to 
compute I, , , ,  . 

It is  convenient  to  rewrite  the  differential d& as d(4 ,  -4,) since 
4m is constant.  Integration by parts  leads  to 

l,, = - kall 
4 

[,,a sin (v)] cos (9) d d } .  (28) 

Note  that  both  terms  are  now finite for all values of m and n. It 
is  also not necessary to make  the  approximation  of  point  source  for 
m # n since  all of the  integrals  can be computed  directly. 

The  numerical  results  obtained  using  (28)  are  presented  in  Fig. 4(a) 
and (b). Both  the  real and imaginary  parts of the  induced  current 
density  are  plotted  as a function of the  angle 4 for  values of 
a = X/4, X/2, and X. The  analytical and numerical  solutions  are 
plotted  simultaneously.  The  two  solutions  agree to within  the fifth 
digit  after  the  decimal  point;  they  agree  within  plotting  accuracy. 
Note  that  the  wave  is  incident  at 4 = 180 degrees  and not q5 = 0. 
The  numerical  results  were  obtained  using  128  basis  functions. We 
intentionally  used  a  large  number of basis  function to test the  stability 
of  the  integration  technique  in  the  limit of small  intervals.  Larger 
numbers  were  also  tested  and  gave  stable  and  increasingly  accurate 
solutions. 

VII. CONCLUSIONS 
An efficient  scheme  to  compute  singular  integrals  is  presented. 

A combination  of  integration by parts  and  change of variables  can 
be  used to remove  integrable  singularities.  The  remaining  integrands 
are  well  behaved and pose no serious  numerical  problems.  Power- 
law  singularities  can  be  removed  through  a  change of variables, 
whereas  integration by parts  eliminates  logarithmic  singularities.  Two 
successive  integrations by parts  also  eliminate  the  singularity  from 
the  Cauchy  principal  value  integrals.  Typical  examples  taken  from 
the literature, some with known  closed-form  solutions,  were  used 
to illustrate the  stability  and  the  convergence of the  approach.  The 
technique  was  used to calculate  the  induced  current  density  on  a 
perfectly  conducting  cylinder.  The  stability of the  numerical  solution 
was  verified by comparing  the  analytical  and  numerical  solutions 
which  agree  well. 
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Comments  on  “Experimental  and  Theoretical 
Comparison  of  Some  Algorithms for Beamforming 

in  Single  Receiver  Adaptive  Arrays” 

Yimin Zhao and Dehang  Ju 

In the  above  paper,’ B. G. Wahlberg, I. M. Y. Mareels,  and I. 
Webster  present  a  simple  algorithm to estimate  the  covariance  matrix 
by perturbing  the  weights W. 

Section 11, however,  contains  two  errors.  The  basic  error is in  (17). 
This  leads  to  errors  in  (18). 
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