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Numerical valuation of the imensional 
ized Exponential  Integral 

Martin  Gimersky, Student  Member, IEEE, Smain Amari, and Jens Bornemann, Senior  Member, IEEE 

Ahtruct- An exact  technique  for  the  evaluation of  the 
two-dimcnsional  generalized  exponential  integral-as  required 
in  structures  involving  rectangular  planar  radiators  and 
transmission lines-is presented.  It is shown that the  singularity 
is integrable  if  integration is performed in polar  coordinates. 
The  integral  can  be  calculated  exactly and with  minimal 
computational  effort,  even  if  integration  over  the origin’of the 
coordinate  system is required-regardless of whether  the  origin 
is an internal  or  boundary  point of  the integration  region. 
Comparison  with  a  standard  technique  proves  the  presented 
approach  superior.  Stability of the  algorithm and convergence 
is discussed.  Performance is demonstrated  for  the  example of 
an asymmetrically  edge-fed  patch antema. 

I. INTRODUCTION 

A CCURATE calculation of the  generalized  exponential 
integral is of paramount  importance for the  method-of- 

rrlornenls soh  Lions of‘ problems  involving  radiating structures. 
Inaccuracies of the numerical  evaluation  of  mutual  and self- 
impedances can  lead  to grossly  incorrect  current distributions. 
In  addition,  varying  the  degree of inaccuracy  of  the  numeri- 
cally  integrated elements of  the  impedance  matrix is equivalent 
to tuning  the results which, in effect, means inability to predict 
unknown  values. 

The generalized  exponential  integral in its one-dimensional 
form  is well  known from the  calculation of mutual and self- 
impcdanccs of wire  antenna  elements. The specific  problem 
of calculating  the  self-impedance of a  wire  element of length 
Zx and  radius a is, from  the  numerical point of view,  reduced 
to the evaluation of the  integral 

x e - j k & ? T 2  

I1 = s_, v F T 2  
dx’ . (1) 

The presence of radius a in the  expression reflects sampling 
the electric field just  above the surface o i  the  wire,  which is in 
direct  correspondence  with  physical reality. Despite the fact 
that  an  infinitesimally  thin  wire ( a  = 0) is not of practical 
importance, it should not be left unnoticed  that  intcgral 1, in 
(1) does not exist for a = 0.- 

A multitude of techniques for the  evaluation of 1, can 
be found in the literature, and  we  will  mention  only a fcw 
representatives  here.  In [ 11, the  one-dimensional  exponential 
integral is expressed in terms of three integrals  where  the first 
is available in closed form,  while the  remaining two are  given 
by tabulated  generalized  sine  and cosine integrals. In 121, I1 
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Fig. 1. A pair of rising and falling half rooftops representing a surface 
current, and the rectangular integration region of the falling half rooftop in 
the Cartesian coordinate system. 

is  expanded  into  a Maclaurin series, and  an  approximation 
accounts for only  the first real and first imaginary  terms. Of 
particular  significance is the  technique  announced in 131 which 
is stablc for a wire  radius-to-wavelength ratio as small  as 

Planar radiators, by  analogy,  require  evaluation  of the two- 
10-19 [31. 

dimensional  integral 
X ? > O  Y , > O  c-Jkd- 

= i,,o L < ”  &+ + y’Z + a 2  
dy’ dx‘ ( 2 )  

which  corresponds to the usage of pulses in the  role of 
subsectional  expansion  functions in the  method-of-moments 
formulation. If different  expansion  functions  are  desired,  the 
integrand of I2 needs to  be properly  modulated and the  limits 
of integration may change, where the origin (E’% u’) = (0 ,  0) 
may  be  located inside or on the  boundary of the  integration 
region.  For  example, in the  rooftop-function  representation, 
which  employs  pairs of rising and  falling triangles as sub- 
sectional  expansion  functions  (Fig.’ l),  e.g., [4], evaluation 
of 

- j k Jaz- 

I3 = LZZL2 (1 - $1 + g / 2  + a2 dy’ d d  (3 )  

is involved in the  calculation of self-impedances  related to 
falling half  rooftops  (modifications fora rising  half  rooftop are 
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Fig. 2. Calculated  values of the real  part of integral 13 versus a (parameters: 
x1 = 0, x2 = 5 cm, y1 = -3 cm, yz = 3 cm,  frcqucncy = 2 GHz). Solid 
lines: six outer-/three  inner-point Gaussian integration in polar  coordinates 
according to (6); dashed  line of principal figure: three  outer-/six inner-point 
Gaussian  integration in  Cartesian  coordinates  according to (3); dashed  line of 
inset: 96  outer496 inner-point Gaussian  integration in Cartesian coordinatcs 
according to (3). 

straightforward). It should  be pointed out that while the case 
of a = 0 is  of  merely academic  importance in one-dimensional 
wire  antenna  applications, it has a perfectly valid physical 
equivalent  for  two-dimensional  planar  radiator  configurations; 
it corresponds  to  integrating  the electric field  on the  surface 
of a  radiating  element. 

Integrals of the types of 12 and I, have been cvaluated 
by techniques that, although different in approach to the 
problem,  have one feature in common-they fail to integratc 
the singularity that emerges  at a = 0 and (z‘; y’) = (0, 0). 
In addition, very often they implement  various  convenient 
approximations that reduce  numerical  complexity at the cost 
of introducing more inaccuracy  and  limiting  the  application 
range of the  algorithm,  often making it custom made for  one 
particular class of problems  or  application. 

In this paper, we  show that the singularities of the two- 
dimensional  generalized  exponential integrals in (2), (3), 
which arise with a = 0, arc integrable, that the integrals 
are finite,  and  that  thcy can  be stable and exactly  calculated 
without any  need for  time-consuming  computing. 

11. INTEGRAL CALCULATION 

The  general  configuration  for integrals of  the type of I2 

is depicted in Fig. 1. Instead of performing  integration  in 
the Cartesian  coordinate  system we evaluate I2 in polar 
coordinates,  resulting in 

~ ~ ( 0 )  , . - j k m  

12=b2Tk dm PdPd0 (4) 

where p = d m  and p c ( 0 )  is the radial distance  from 

the  origin of the  coordinate  system to the  contour of the 
integration  region. It is obvious that the  technique is directly 
applicable  also to the  cases where  the origin of the coordinate 
system is located  outside of the  integration  region; in  these 
cases  the  lower  integration limit over p would be  some  positive 
value pcl(0) instead of  zero. After  the  change of variables 
u = wc gct 

Clearly,  the  singularity  which arises at a = 0 in Cartesian 
coordinates [cf., (2)], has been removed, and the integral 
poses no numerical difficulties. Note that ( 5 )  is independent 
of  the shape of the  contour  describing  the boundary of the 
inlegration  region. For the  rectangular  contour of Fig. 1, 
p c ( 0 )  = x2/(cos 0) for the right vertical line, pc(0 )  = 
yz/(sin 0) for  the upper horizontal line, pc(0)  = : I : I / ( C . O S  6’) 
for  the left vertical line, and pc (0) = y1/ (sin 0) for the lower 
horizontal line. 

Finally, utilizing the result for 1, and calculating  the integral 
over p by parts, we evaluate 13 as 

. COS 0 dB. (6)  

Once again,  the  singularity is no longer  present. Of course? 
the numerical  integration  over 0, although  involved in both 
components of I,, does not have to be  performed in two 
separate cycles. This  integration  for  two different integrands 
(where  the  second  integrand  requires  also  integration  over p) 
can  be executed in a single cycle; as  a result of that, our 
software  implementation of 13 requires only  two loops,  one 
submerged in the other. 

111. NUMERICAL RESULTS 

Fig. 2 shows plots of the real part of integral Is versus 
a. Calculations  produced by two different algorithms  are  pre- 
sented: 1) two-dimensional  Gaussian  integration in Cartesian 
coordinates (dashed lines) and 2) the  technique  described in 
this paper, i.e., exact  two-dimensional  integration in polar 
coordinates, using the  Gauss  quadrature (solid lines). The 
Gaussian-integration results in polar coordinates (solid lines) 
were  obtained by integrating in only three  points in the  inner 
integral and six points in  the outer integral [cf., (6)], for  each 
particular  value of a. However,  those in Cartesian  coordinates 
(dashed lines) were  calculated with  six points in the  inner and 
three points in the  outer integral [cf., (3)]. This  reversal of  the 
number of points  for  inner and outer  integrations in Cartesian 
coordinates  produces more accurate results, because  a higher 
number of points in the  inner integral smooths  the  intcgrand 
of the  outer integral. Each  curve in Fig. 2 contains 2001 points 
and took 1.4 s of CPU  time of an IBM RS/6000 530 machine. 

Before  evaluating  the results of Fig. 2, somc  rcmarks  about 
the  presentation of valucs at a = 0 are in order. The solid 
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Fig. 3. An asymmetrically edge-fed rectangular patch, and frequency dependence of i ts  input reflection coefficient. Dashed line: measurement of [SI 
Solid line: our calculation involving the new integratlon procedure of this 1 

lines are  calculated  exactly at a = 0; as no singularity 
exists in (6). Also the dashed line is calculated at a = 0, 
but the  numerical  integration  carefully  avoids  the  sampling 
point (d, y’) = (0, 0), for  which  the  integration  in  Cartesian 
coordinates (3) fails to produce  a finite value. 

As expected,  the results of the  Gaussian  integration in 
Cartesian  coordinates (dashed line) converge to those in polar 
coordinates (solid line) as a increases.  Better  convergence 
for  smaller a can be  achieved by significantly increasing  the 
number of integration  points in (3). This is demonstrated 
in the inset of Fig. 2, using  96 x 96 integration  points 
in  Cartesian  coordinates.  However,  the CPU time  increases 
from  the  aforementioned 1.4 s to 199.2 s which, clearly, 
makes a  further  increase of precision in Cartesian  coordinates 
unreasonable. On the  other  hand, the new technique using 
integration in polar  coordinates (6) is stable with  respect to  an 
increase in the  number of integration points. The maximum 
difference  between  the (6, 3)- and (96, 96)-point  integration in 
polar  coordinates  occurs at a = 0 and is 0.1% thus falls within 
the  plotting  accuracy of the solid line of the Fig. 2 inset. 

No problems  have  been  encountered  when  evaluating  the 
imaginary  part of 13. Computations  using  integration in both 
Cartesian and polar  coordinates  are in good agreement. 

proves that our  technique is superior 

paper. 

Cartesian  coordinates. We have  stressed  out  the  precision of 
integration  at a = 0 and  at  small a’s, because  these  are 
the situations that are  involved in the  evaluation of self- and 
mutual  impedances,  respectively, of planar-radiator  elements. 
Varying the  degree of inaccuracy in the  evaluation of the 
impedance  elements results in a wide range of possible but 
inaccurate  current  disbibutions. 

IV. APPLICATION 

We have  employed the  new integration  procedure of this 
paper to calculate  the  frequency  dependence of the  input 
reflection coefficient of an asymmetrically  edge-fed  rectan- 
gular  patch  depicted in the inset of Fig. 3. Our calculated 
values of ISlll (solid line) are  plotted in comparison with 
measurement of [SI (dashed  line). With the  sole  exception of 
the  measured  dip at 10.18 GHz, the  calculation confirms the 
measurement  over the entire frequency band. The slight ripple 
in the  measurement in [5] is attributed to imperfections of 
measuring  equipment. We have  investigated  the  mechanism 
that gives rise to the  dip of lSlll at 10.18 GHz and found 
that the  dip is created  by  the  feeding  microstrip  section and 
depends on its length.  Because  the  length is not  specified in 
[ 5 ] ,  we subsequently  varied  the  quantity  and  were  able to move 
the  dip  over  the entire frequency  range;  the solid line of Pig. 3 
corresponds to the case in which  the  dip is below 4  GHz. 

V. CONCLUSION 

It is demonstrated that the  two-dimensional  generalized 
exponential integral, unlike  the  one-dimensional  one,  always 
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exists and  can  be calculated  exactly and without any need  for 
extensive  computing.  Integration in polar coordinates  over  the 
radial variable p removes the singularity from  the  integrand 
and, thcrcfore, leads to a stable and  computationally efficient 
numerical  algorithm. Only 6 x 3 points in the  Gaussian 
quadrature  are needed  to achicvc rcsults accurate to better 
than 0.1%. Good  agreement is observed  between  measured 
and  calculated  frequency  dependences of the input  reflection 
coefficient of an asymmetrically  edge-fed  rectangular  patch 
antenna. 
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