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Application of a Coupled-Integral-Equations
Technique to Ridged Waveguides

Smain Amari, Jens Bornemann, Senior Member, IEEE, and Ruediger Vahldieck, Senior Member, IEEE

Abstract— Cut-off frequencies of all TE and TM modes of a
ridged rectangular wave guide are accurately determined using
a coupled-integral equations technique (CIET). The technique
analyzes both symmetric and asymmetric situations in one step.
Basis functions, which include the edge conditions and mirror
images in the waveguide walls, are used in the moment method
solution of the integral equations. One or two basis functions
are found sufficient to accurately determine the spectrum. The
limiting case of a zero-thickness metalIic ridge is also presented.
Results from the present technique are compared with available
data; excellent agreement is documented.

I. INTRODUCTION

R IDGED WAVEGUIDES have been used in many mi-
crowave communication systems because of their ex-

tended bandwidth [1]–[2]. The first analysis of rectangular
ridged waveguides was presented by Cohn using the transverse
resonance method [3]. Using the same technique, Hopfer [4]

and Pyle [5] presented improved results for the TEno. The
cutoff frequencies were determined from a characteristic equa-

tion, which is derived from the transverse resonance condition,
where the ridge is represented by its equivalent susceptance.
The accuracy of the solution is, therefore, contingent on the
availability of closed form and accurate expressions for the
susceptance. Montgomery [6] computed the entire TE and TM
spectrum of a ridge waveguide from an integral equation that
was solved using the Ritz-Galerkin method. Utsumi [7] used a
variational formulation, along with a trial function that satisfies
the edge condition, to determine the spectrum of the structure
and its modal field distributions. Omar and Schunemann
[8] applied the generalized spectral domain technique to the
symmetric ridge waveguide, where the axial components of
the electromagnetic field are expanded in a series of basis
functions which satisfy the edge conditions [8]. By expanding
the axial components, however, basis functions covering the
entire boundary of the ridge are required.

In all these reports, the analysis is limited to symmetric cases
where electric or magnetic walls are assumed at the location
of the plane of physical symmetry. The determination of the
spectrum of the structure is carried out separately for each
symmetry.

In the technique presented here, the TE spectrum is deter-
mined in one step regardless of the symmetry of the structure.
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Both symmetric and asymmetric ridges are handled through
a single formulation and in a single step. The inclusion of
information about the edge conditions and mirror images at
each of the two metallic edges of the ridge allows accurate
analysis of the spectrum of the system. An expansion of
the tangential electric field, as presented in this paper, limits
the support of the basis functions to a single interface and,

therefore, results in a reduction in the size of the matrices

involved in the moment method. The necessity of accurately

determining the spectrum of asymmetric ridges is of prime

importance for devices where the symmetry is broken and
different polarizations are coupled. This paper presents an effi-

cient and accurate method of analysis that achieves such a goal.
For an asymmetric ridge waveguide, we derive two coupled-

integral equations for the tangential components of the electric
field. These coupled integral equations are then solved using

the method of moments. A major advantage of the coupled-
integral equations technique (CIET) resides in the fact that it

allows us to concentrate on those quantities that are not well

behaved, namely the singular components of the electromag-
netic field, and include that information in the basis functions.

In addition, should the structure contain several points where
the fields are singular, the CIET also readily includes that
information.

The CIET takes into account all modes of the subregions

into which the structure is divided. By doing so, it eliminates

the phenomenon of relative convergence as all the inner
products are accurately computed and tested for convergence.

In other’ words, only one parameter is left in the numerical

solution: the number of basis functions Al. It will be seen that,
even when trigonometric functions are used as basis functions,
the cutoff wavenumbers are accurately determined with three
or four basis functions while a single basis function, which
includes the edge conditions, achieves similar, if not better,
accuracy.

In the case of an infinitely thin metallic ridge, the entire

spectrum is obtained from one integral equation for the TE
and one for the TM modes. Basis functions that include
the Maxwellian edge conditions are used in the numerical
solution, resulting in a reduction in CPU time and increased
accuracy. The results for the infinitely thin case can be used
as starting values in the numerical solution of the coupled-
integral equations when the ridge is of finite thickness, but not
electrically thin.

The next section presents the derivation of the coupled

integral equations for the tangential electric field.
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11. TRANSVERSE ELECTRIC MODES

We consider the structure shown in Fig. 1. It consists of a

metallic ridge of width 2s and height b – d, which is placed
at a distance 11 from the left wall of a rectangular waveguide
of cross section 2a x b. All metallic surfaces are assumed
lossless in this analysis. No assumption about the symmetry
of the structure or the dimensions of the ridge is made.

It is obvious that the dominant physics of the problem
takes place in the vicinity of the metallic ridge, especially
at the sharp comers where the transverse components of the
electromagnetic fields are singular [9]. To guarantee numerical
efficiency, the formulation should capture this singular behav-
ior from the outset. An integral formulation of the tangential
electric field at the interfaces I-II and II-III provides such a
mechanism (Fig. 1). The TE modes a-e considered first.

The transverse components of a TE mode are determined
from the axial component of the magnetic field, Hz. It is also
important to note that, at cutoff, the transverse components of
the magnetic field, Ifm and Hv, are both identically zero. It
is, therefore, sufficient to enforce the continuity conditions for
the remaining tangential components, namely H= and EY.

Following the mode-matching technique (MMT), we ex-
panded Hz and 13V in modal expansions of the following

(la)
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n7r
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(lb)
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n7r
~Y

(1.C)

(2a)

EjI(z, y) = ~ y2n[A~re~2n’ – R~Ie–T2”’ cos1 [;Y]
7L=ll

(2.b)
m

AIII sinh (Yln(Z – 2a)) nm
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[1~Y .E1ll(Z, y) = ~ ?1. nY cosh (71~lz)n=lJ
(2.C)

In these equations, y~n = (n~/b)2 – k: and v& = (nr/d)2 –
k?, where kc is the cutoff wavenumber.

The boundary conditions of the problem are

E;(z ==z~,y) =0, d<y<b (3a)

O<y<d@r(x ==i~,y) =~:~(z = 11,V),Y
(3.b)

E~J(~ = ZI+ 2s, y) =E;~~(iz = 11+ 2s, V),
Y

O<y<d (3.C)

E&l(z = 11+ 2s, y) =0, d<y<b (3.d)

H~(z=ll, g) – ,z –H~~(z = Zl,y), d<y<b

(4a)
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Fig. 1. Geometry of a rectangular ridge waveguide and coordinate syshem.

and

H1r(z = ZI+ 2s, y) = H:~r(z = Z1+ 2~, y),~

d<y <b. (4.b)

Instead of following the MMT, we rewrite the boundary
conditions of the tangential electric field, (3), in a different
form. Let the true distribution of the tangential electric field
13V at the two interfaces be denoted by .fl (y) and .fz I(y),

respectively. It is then easy to verify that (3) can be cast in
the form

E’;(Z = 11,Y) =fl(Y)

E;~(z = 11,Y) = fl(Y)

and

@J(z = 1~+ 2s, y) ‘.f2(y)

(5.b)E;;r(z = 11+ 2s, Y) = ~2(Y)

as long as the functions ~1 (y) and f2 (y) satisfy the following
condition:

fl(Y) = f2(Y) =0, d<y <b. (6)

The introduction of the functions fl and ~2 allows us to
include in the formulation whatever information we have about
the tangential electric field at the interface, in particular its
singular nature.

Equations (5a) and (5.b) are now used in the modal
exrmnsions given bv (2) to vroiect out the modal ex~ansion

(5a)

L . .. /,., ,
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coefficients leading to

~11 =e72n~1 fi~(n)– ji1(n)e272”s
n 272n sinh [272ns]

(7.C)

and

A;II = _ f;(n) (7.d)
Tln tanh (T&)”

The following notations were introduced for convenience

and

The functions jl and ,f2 are determined from the boundary
conditions of the tangential magnetic field, i.e, (4), which we
rewrite in the form

f{I(n)

][172n sinh [27zns] “Cos
yy =0 (9)

and

It is important to emphasize that (9) and (10) hold only in

the interval O < y < d. These two coupled-integral equations
in the functions jl and ~2 fully describe the TE spectrum of
the system.

To transform these integral equations into matrix forms, we
expand the unknown functions in a series of basis functions
B,(y). Since the tangential electric field has the same analytic
structure at the two interfaces, the same basis functions are
used for both fl and ~z. We can therefore write

M

fl(Y) = ~WY) (11.a)

and

(11.b)
1,=1

The number of terms, N and Al in these expansions, are

increased until convergence is achieved. For ease of imple-

mentation, we take ihl = N in this work; it will be seen that

N = AZ = 1 is sufficient.

Let also T~(z), k = 1,2,... denote a testing function for
the tangential magnetic field at the interface. Substituting (11)
in (9) and (10), multiplying by !i”k(y), and integrating we get
two sets of linear equations in the expansion coefficients c
and d, namely

[U][c] + [V][d] = O

[V][c] + [lV][d] = O (12)

where

m

[

B1(n)Tf(n)
[u],,= Z(1 + 6no) ~ln;anh ,7,n1,1

n=O

and

cm

[

S1(n)T/(n)
[/7],3= ‘j7(l + &(J) ~,n:anh ,7,~21

TZ=IJ n

d ~~(n)l?$l(n)
+–

1b 72mtanh [2-y2ns] ‘
i,j=l, . . ..M.

A

(13.C)

The cutoff frequencies of the TE modes are determined as the
zeros of the determinant of the matrix in (12). It is numerically

more advantageous to locate the zero of the smallest singular
value instead, as this allows the suppression of the poles that
are otherwise present in the determinant [10].

When the thickness of the ridge is electrically small it is
convenient to have the results for the infinitely thin metallic
ridge as starting guess. The integral equation giving the
tangential electric field ~(y) at the interface can be derived
following the same steps as above. If the infinitely thin metallic
ridge is located at z = 11, this equation is written as

The function f(y), which satisfies (6), is expanded in a
series of basis functions that include the edge conditions of
an infinitely thin conductor. The expansion coefficients are
determined using the moment method as in the previous case.

III. BASIS AND TESTING FUNCTIONS FOR TE MODES

Two salient features should be included in the basis func-
tions to accelerate convergence: 1) the edge conditions at

(z, Y) = (11, d) and (x, y) = (1 I + 2s, d) (see Fig. 1); and
2) their Fourier spectrum in each of the subregions should not
be a numerical burden itself.

Recall that at a 90° metallic edge, the components of the
electric field, which are transverse to the axis of the wedge, are

– 1/3 where r is the radial distance from the edge.singular as r ,
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On the other hand, at a 180° edge, the normal component of
the electric field behaves as To [9]. It is also possible to include
in the basis functions the fact that there is an electric wall at
y = (). In other words, the edge conditions should also be

mirrored into this wall. A set of basis functions that satisfy all
these criteria are given by

[
Cos (2 – l)7r:

B,(y) = 1 i=l,2, . . . .

(’-(32)1’3’

(15)

The Fourier spectrum of these basis functions, i.e, the quanti-
ties fif(n) and ~~~(n), are expressible in terms of Bessel
functions of the first kind of order 1/6, JliG [111. More

specifically

B:(n) = *~r(l/2)r(2/3)
[

J~/6((i – 1 + nd/b)7r)

((rid/b + 2- l)7r/2)1/6

J~,6(/i – 1 – ?zd/b/7r)

+ (lnd/b – 2 + 117’r/2)1/61
and

(16.a)

a:~(n) = 1
[

—~r(l/2)r(2/3) ‘~16((i – 1 + ‘)K)
l+&02 ((z -1 + n)7r/2)’/6

c7~,(j(12– 1 – 7+)

+ (Ii -1- n17r/2)’/6 1 (16.b)

where I’ is the Gamma function. When the argument of one of
the Bessel functions vanishes, the corresponding term should
be replaced by the quantity

1 1 r(l/2)r(2/3)
Q,(n) = —

l+?ino~ r(7/6) ‘
i—1=~. (17)

Although the spectrum of the basis functions in each of the
subregions involves Bessel functions, most of the arguments
in these functions are large. Asymptotic expansions can be
fruitfully used with very little loss in accuracy. It is also true
that most of these spectra are localized around the zero value
of their argument. Hence, the sums in (13) are dominated by

only a few terms.
The testing functions are used in projecting the tangential

magnetic field in the interval O < y < d. To extract as much
information about this quantity with only a few projections, it
is important to be able to include in the testing functions the
qualitative features of IIZ (y). The edge conditions correspond
to a nonanalytic behavior of the form r113 at the 90° edge and
the fact that it approaches a constant at y = O, i.e., behaves
as To. Taking into account the presence of the electric wall at
y = O, the following testing functions are used in this work:

Cos [(2 – l/2)7rj]
T,(y) = 2 =1,2,.... (18)

(1-(;])’)1’3 ‘

The Fourier spectra of these functions can also be expressed
in terms of Bessel functions of order 1/6 [11]

f:(n) = *~r(l/2)r(2/3)

“[J1,~((i – 1/2 + ncl/b)7r)

((n(i/b + ‘i- l/2)7r/2)’/’

@(ii – 1/2 – nd/bl~)

+ (@/b -‘i+ l/217r/2)’/6 1 (19.a)

and

T:J(n) = * z
[

lr(l/2)r(2/3) ‘~iG((i - 1/2+ n)7~
((2 - 1/2 + n)7r/2)1/6

L7~/G(li– 1/2 – nl~) 1+(12-1/2 - n]7r/2)1/6 “
(119.b)

When the argument of the Bessel function vanishes the cor-
responding term should be replaced by the expression given
in (16).

The limiting case of an infinitely thin ridge presents a
Maxwellain singularity at the tip of the ride. A set of basis
functions for this case is given by

Cos [(i – lM
z.(y) = “ ‘(II./m, ,=1,2, . . . . (20,

The Fourier spectra of these basis functions are given by

j;(~) = ~[Jo[@ -1 + rid/b)]

+ Jo(nlz – 1 – nd/bl)]. (21)

IV. TRANSVERSE MAGNETIC MODES

Transverse magnetic modes have a nonvanishing component

of the axial electric field, E., from which the remaining
components can be obtained.

Note also that, at cutoff, the transverse components of the
electric field are all zero; we need to focus only on the
component of the magnetic field which is tangential tcl the
interfaces, i.e., on HY.

In each of the regions I, II, and III, E. is expanded in modes
that satisfy all the boundary conditions of the region except
those in the planes of the interfaces

(’22.b)

~AIIIsi.h [’Yln($ - z~)] Y
n [1

sin n7r —
sinh [-y1n12] bn=l

(22.C)

(23a)
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. sin
[1~Y (23.b)

[1
Y

sin nr– .
b

(23.c)

The boundary conditions of these modes are

~~~~(x = 11 + 2s, y) = 0,E:(z=ll, y) = ~

d~y~a (24a)

E~(z = 11,y) =Ey(dl,Y)jz

O<ysd (24.b)

E~~(z = 11 + 2s, y) =E:ll(Z = 11+ 2% Y),z

O<y~d (24.c)

H;(:D = 11,y) =Hfl(lil,y),

O<ysd (24.d)

and

H:(X = 11 +2 S,7J) =Hfl(x = 11 +2s, y),

O<ysd. (24.e)

Following similar steps to those for the analysis of the TE
modes, we introduce two functions gl (y) and g2 (y), which

represent the quantity Ez at the two interfaces, respectively,
and rewrite the boundary conditions (24) as

E1(z = il,y)‘91(Y)
(25a)@~(z = 11,y) = 91(Y)~.

and

Err(z = 11 + 2S, y) ‘.92(!/)

E;;~(x = /l + 2s, y) =g2(y). (25.b)

The forms given by (25) guarantee that the boundary condi-

tions of the electric field are always satisfied as long as the
functions gl and g2 satisfy (6).

The coupled integral equations, which govern gl and g2,
are derived from combining the expansions given in (23)
with (25) and the boundary conditions (24). The algebra is
straightforward and leads to

and

(26)

(27)

For the TM modes, the following notation is used:

and

~’(n)=~~’g(y)sin [nfi~]dY. (28.b)

To solve these two coupled-integral equations, we expand the
functions gl (y) and g2 (y) using a set of basis functions as in
the TE case. Obviously, the basis functions for the TE and TM
modes are different. If IIi (y) denotes a generic basis function
for the TM modes, we write gl and g2 as

*=1

N

92(Y) = ~ !hm(Y). (29)

If testing functions L,(y) are used to sample the magnetic
field boundary condition given by (26) and (27), the expansion
coefficients p, and q, are found to satisfy the following
homogeneous coupled sets:

[x]~]+ [Y][q] = ()

[Y]~] + [Z][q] = (1 (30)

where

z,j=l, . ..>~ (31.a)

(31.b)

Z.j=l, ....lw. (31.C)

The cutoff frequencies of the TM modes are given by the zeros
of the determinant of the coupled linear systems in (30). To
avoid the poles in the determinant, the zero of the smallest
singular value of the system is located instead [10].

The TM modes of an infinitely thin metallic ridge of height

b – d and located at x = 11are analyzed in analogy with the
TE modes. The function g(y), which represents the tangential
electric field E: at the interface, satisfies the following integral
equation:
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Fig. 2. Convergence of the cutoff wavenumbers of the first eight-mode s when edge-conditioned basis functions are used. a = b9.5 mm, d ::: 1,7
mm, s == O.1~ mm. (a) TE modes. (b) TM modes.

By expanding the function g(y) in an appropriate set of basis
functions, this integral equation is solved by the standard
moment method.

V. BASIS FUNCTIONSFOR TM MODES

The basis functions that are used to expand the tangential
electric field Ez at the interface should each include the edge
conditions at (z, g) = (11, d) and (z, y) = (11 + 2.s, d). In
the vicinity of (z, ~) = (11, d) and (z, y) = (11 + 2s, d), E.
vanishes as r213 and as rl as y ~ O [9]. Taking account of the

fact that an electric wall exists at y = O, it can easily be verified
that the following basis functions satisfy these conditions.

[1
sin i7r–

Gi(x) = d
~ 1/3 ‘

i=l, z,....

[(1-(:;]

(33)

The spectra of these functions over the modes of regions I and
II can be expressed in terms of Bessel functions of the first
kind of order 1/6, ~1/fj [111

[
G{(n) = ~~r(l/2)r(2/3) ‘! ’G([z – ‘d’b[n)

(12- nci/blT/2)1/’

@G((i + nd/h)n)
—

((i + ?-@)7r/2)’/6 1
and

[

J~/~[li–+r]
G~~(n) = ~r(l/2)r(2/3) [Ii _ ~lm,211,6

Jlpj[(z+7L)7T]—
1[(i + n)7r/2]’/6 “

(34a)

(34.b)

For the TM modes the testing functions are taken equal to the

basis functions L~(g) = G,(y).
The basis functions for the infinitely thin metallic ridge

should include the nonanalytic behavior of E=. Taking into
account the mirror image in the electric wall at y = 0, the
following basis functions are used:

[1
Ysin i7r—

G:(y) = d

~~

> i=l,z. (35)
2

1– ~
d

The spectra of these basis functions are given in terms of the

Bessel function Jo

GO1(n)= ~{clo[nli- nd/bl] –~o[~(i + rid/b)]}. (36)% 2

VI. NUMERICAL RESULTS AND DISCUSSION

The CIET is used to compute the spectrum of the ridge
rectangular waveguide shown in Fig. 1. To validate the theory

and the computer code, we compare results from the present
work to those given in [4], [7], and [8] for the symmetric
ridge (11 = 12 = a).

Fig. 2 shows the cutoff wavenumbers in radhmn of the first
eight TE modes when upto six basis functions, which include

the edge condition and the mirror imaging in the waveguide
walls, are used. The results clearly demonstrate that one or
two basis functions are sufficient; consequently, only two basis
functions are used in the following calculations.

Table I shows the cutoff wavenumbers of the first eight
TE modes in rad/mm when a = b = 9.5 mm, s = 0.15

mm, and d = 1.7 mm. The agreement with data from [7] and
[8] is excellent as it can be clearly seen. The same table also
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TABLE I

CUTOFFWAVENUMBERS(rad/mm) OF THE FIRST EIGHT TE MODESINA SINGLE-RIDGEWAVEGUIDE

Mode 1 2 3 4 5 6 7 8

Present Method 0.0926 0.3332 0.3811 0.5263 0.6653 0.6916 0.7453 0.8295

Ref. [7] 0.0930 0.3332 0.3881 0.5265 0.6654 0.6913 0.7456 0.8298

Ref.[8] 0.0928 0.3332 0.3810 0.5262 0.6654 0.6912 0.7456 0.8294

s= O-approx. 0.0968 0.3309 0.3811 0.5284 0.6621 0.6853 0.7411 0.8316

a= b=9.5mm, s=0.15 mm, d=l.7mm

TABLEII
CUTOFFWAVENUMBERS(radhnm) OFTHEFIRSTEIGHTTE MODESINA SINGLE-RIDGEWAVEGUIDEWHEN TRIGONOMETRICFUNCTIONSAREUSEDASBASISFUNCTIONS

M Mode 1 2 3 4 5 6 7 8

1 0.0910 0.3330 0.3800 0.5245 0.6653 0.6910 0.7453 0.8280

2 0.0925 0.3337 0.3811 0.5263 0.6653 0.6910 0.7453 0.8295

3 0.0928 0.3332 0.3810 0.5262 0.6654 0.6912 0.7455 0.8294

4 0.0928 0.3332 0.3810 0.5263 0.6654 0.6912 0.7455 0.8294

5 0.0928 0.3332 0.3810 0.5263 0.6654 0.6912 0.7455 0.8294

6 0.0928 0.3332 0.3810 0.5263 0.6654 0.6912 0.7455 0.8294

20 0.0928 0.3330 0.3810 0.5263 0.6654 0.6912 0.7455 0.8294

a=b=g.!jmm,s=().lsmm, d=l.7mm

y
=0.35

3 —
x

x
=0.65 x

2 I I 1 1 1 I I , I I ! I , I ( , ,

0.0 0.2 0.4 0.6 0.8 1.0

s/a

Fig. 3, Cutoff wavelengths .\. /(2a) as a function of s/a for different values
of d/b. Two basis functions were used in obtaining these results. The crosses
are from [4] and b = 0.45a.

gives the corresponding cutoff frequencies of the infinitely thin

metallic ridge. Except for the first mode, where the relative

error is of the order of 4%, the differences between the cutoff

frequencies obtained from the infinitely thin assumption and

those of the ridge of thickness 2s = 0.3 mm are minor.

When the thickness of the ridge is small compared to the

dimensions of the waveguide. the results of the zero-thickness

approximation can be used as starting values in the search for

the cutoff wavenumbers of the actual structure.

The dependence of the cutoff wavelength of the fundamental

mode TEIO on the thickness of the symmetric ridge is shown

in Fig. 3 for different values of the ratio d/b when b = 0.45a.

The crosses are from [4]. The agreement is good, except when

d/b = 0.65, where an error of the order of 5% is found when

s/a = 0.8.
To test the capability of the formulation to analyze asym-

metric structures, the cutoff wavelength of the fundamental
mode as a function of the location of the ridge was computed

(Fig. 4). As expected, the largest effect takes place when the

ridge is located at the maximum of the electric field of the

unperturbed fundamental mode of the waveguide. The cutoff

wavenumber obtained when 11/a = 1 is identical to that given

in Table I.

To test the sensitivity of the method to the nature of the

basis functions, trigonometric functions were also used to
compute the TE spectrum of a symmetric ridge. Table II
shows the convergence of the cutoff wavenumbers as the
number of basis functions is increased. It is clearly seen

that the results obtained with three or more basis functions

agree well with those given in [7] and [8], It is worth

emphasizing that the relevant inner products in (13) and (31)

should be accurately computed by numerically testing for

their convergence, thereby leaving only one parameter in the
approximate solution, i.e, the number of basis functions. The
standard mode-matching technique corresponds to truncating
the sums at a fixed threshold. As the number of basis functions
is increased, the truncated sums fail to accurately describe
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TABLE III
CUTOFFWAVENUMBERS(rad/mm) OF THE FIRST EIGHT TM MODESINA SINGLE-RIDGEWAVEGUIDE

Mode 1 2 3 4 5 6 7 8

0.16

0.14

0.12

0.10

0.08

Present Method 0.4711 0.4714 0.7410 0,7416 0.7481 0.7487 0.9400 0.9422

Ref. [4] 0.4665 0.7358 0.9427

s= O-approx. 0.4672 0.7371 0.9315

a= b=9.5mm, s=0.15 mm, d=l.7mm

1.0 1.2 1.4 1.6 1.8

ll/a

Cutoff wavenumber of the fundamental mode as a function of the
po~ition of the ridge. b = a = 9.5 mm, s = 0.15 mm, and d = 1.7 mm.

the basis functions resulting in the phenomenon of relative
convergence.

The cutoff wavelengths of the TM modes were also com-
puted using the CIET. Table III shows the cutoff wavenumbers
of the first eight TM modes along with those presented in [7]. It
is interesting to note that the modes reported in [7] agree well
with those of the infinitely thin approximation when d = 1.7
mm, s = 0.15 mm, and b = a = 9.5 mm. A close scrutiny
of the behavior of the minimum singular value shows that

there are, in fact, eight modes whose cutoff wavenumbers are
smaller than 1 rad/mm. Only three of these were reported in
[7]. Four of these cutoff wavenumbers are clustered around
0.74 rad/mm, two around 0.46 radhnrn, and two more around
0.93 radhnm. For the infinitely thin and symmetric ridge, these

three groups are degenerate as can be seen from a direct
analysis with electric and magnetic walls at the position of
the infinitely thin ridge.

VII. CONCLUSION

A CIET was presented and applied to determined the TE
and TM spectrum of a ridge rectangular waveguide. The
formulation allows the inclusion of the edge condition at
more than one plane, thereby effectively handling asymmetric
as well as symmetric structures. By testing the sums in the

inner products for convergence,
convergence is not encountered.

the phenomenon of relative
One or two basis functions,

which include the edge condition and are mirror-imaged
in the walk of the waveguide, are sufficient to determine
the spectrum of the structure. Excellent agreement between
the presented results and the literature is documented. The
technique is readily applicable to more complicated situations
where edge conditions are present at more than two locations.
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