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Abstract-A Coupled-Integral-Equations Technique (CIET) for the analysis of multiple 
discontinuities and bifurcations in rectangular waveguides is presented. A set of coupled 
integral equations for the tangential electric field over the planes of the discontinuities 
are derived and then solved by the moment method. Basis functions, which include the 
edge conditions and mirror images in the walls of the waveguide, are used to accelerate 
convergence of the numerical solution. One or two basis functions are sufficient to accu- 
rately determine the reflection and transmission properties of H-plane discontinuities and 
bifurcations. Reflection and transmission properties of N discontinuities are computed 
accurately from a single matrix of the order of 3N x 3N instead of cascading the indi- 
vidual generalized scattering matrices whose dimensions increase rapidly as the distances 
between the discontinuities decrease. 

I. INTRODUCTION 

Discontinuities in waveguides have been heavily investigated both numerically and 

analytically over the past five decades. They have also been used, and continue to 

be used, in a variety of microwave devices such as couplers, filters and matching 
sections. 

Early methods of analysis were essentially analytical in character, geared to- 
wards deriving equivalent lumped circuit elements for a given discontinuity. Vari- 
ational expressions for these lumped elements were established and then used to 
obtain accurate results with reasonable trial solutions [1,2]. 

The Mode-Matching Technique (MMT), coupled with the generalized scatter- 

ing matrix method, was also used by many researchers [3,4]. The moment method 

was also used by Auda and Harrington [5], by Leog et. al. (6] and by Lyapin et. al. 

[7] to investigate scattering from a waveguide discontinuity. Recent work on im- 

proving the MMT has focused on including the edge conditions and dealing with 
the phenomenon of relative convergence [8]. Along these lines, Sorrentino et. al. 

[9] presented and extensive discussion of the numerical properties of inductive 
and capacitive irises within a modified mode-matching technique which includes 
the edge conditions. The tangential electric field at the aperture of the iris are 

expanded in series of weighted Gegenbauer polynomials. A similar approach was 
used by Rozzi and Mongiardo in the analysis of flange-mounted rectangular wave- 

guide radiators [10]. Omar and Yang also used basis functions which include 
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the edge conditions in their analysis of multiple windows in a resonant iris for 

microwave filters applications [11]. 
In the work reported in the literature up to date, attention is focused on a single 

discontinuity at a time. The analysis of multiple and successive discontinuities is 

performed in a modular fashion by cascading the individual generalized scattering 
matrices or admittance matrices. Although this approach enjoys a high degree 
of flexibility, as a variety of discontinuities can be analyzed separately and then 

stitched together, it gives and undue role to the normal modes of the waveguides. 
The situation becomes even more crucial when the distance between adjacent 
discontinuities decreases, leading to large individual scattering matrices. 

In most applications where multiple discontinuities are used, measured quanti- 
ties refer to response functions, such as transmission and reflection coefficients, at 

the "external" ports of the structure. Indeed, two physically different circuits are 

equivalent if their response functions are equal regardless of their internal struc- 

tures. The behavior of the electromagnetic field at all internal discontinuities, 

although important in determining the overall response functions, is of limited 

interest. The Coupled-Integral-Equations Technique (CIET) used in this paper 
allows the direct computation of the response functions at the external ports and 

still accurately describes the electromagnetic field in the entire structure. 

In this paper, we reexamine the role played by the individual modes of the 

waveguide and show how multiple successive discontinuities can be investigated 
in a single run. The approach relies on the fact that the dominant physics of 

the problem takes place at the discontinuities; the normal modes only provide a 

means of describing the energy flow. From the uniqueness theorem, specifying 
the tangential electric field over a closed surface is sufficient to determine the 

electromagnetic field in the volume enclosed by that surface [12]. The expansion 
coefficients over the normal modes of a section of a waveguide contained between 

two consecutive discontinuities, can therefore be expressed in terms of the tan- 

gential electric fields at the same discontinuities. The problem is reformulated in 

terms of these tangential fields instead of the normal modes of the waveguiding 
sections. By doing so, important information about the edge conditions and mir- 

ror images can be straightforwardly incorporated in the theory from the outset. 

Also, all the normal modes are included in the theory as they are involved only in 

computing inner products, regardless of the strength of the interactions between 

the discontinuities. 
In order not bury the main idea of the technique in algebraic manipulations, 

in this paper, we only consider H-plane discontinuities. We investigate the reflec- 

tion properties of an infinitely long asymmetric bifurcation, a bifurcation of finite 

length, and finally cascades of two and three septums of finite length. In all cases, 
the efficiency and accuracy of the technique is documented. 
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II. SCATTERING OF TE 10 FROM TWO SEPTUMS 

The structure under consideration is shown in Figure 1a. It consists of a rectan- 

gular waveguide of cross section a x b and two H-plane septums of thickness d 1 
and d 3 and height a - a 1 . The two septums are separated by a distance d 2 . We 
assume that all metals are perfectly conducting and that only the fundamental 
mode TE 10 is incident from left side. 

Figure 1: Subdivision of structure and coordinate systems. a) two sep- 
tums, b) three septums and c) finite length bifurcation. 

In the standard Mode Matching Technique (MTT), the structure is analyzed 
by determining matrix representations for the individual discontinuities, I-II, II- 

III, IH-IV and IV-V respectively, and then cascading the individual matrix rep- 
resentations. The efficiency of the method can be improved by including the 

edge conditions in the analysis of each discontinuity and the fact that only a 
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finite number of "accessible" modes are important in the interaction between two 

neighboring discontinuities [13]. It is, however, not obvious how a proper number 
of "accessible" modes is to be rigorously determined beforehand. 

In the present method, we take another approach to the problem. To guarantee 
numerical efficiency, the method must include the edge conditions as well as any 
other pivotal information about the electromagnetic field. In addition, it must 

accurately take into account the interaction between neighboring discontinuities 

regardless of their separation. Fortunately, both requirements can be incorporated 
in the present method. 

Let us assume that the tangential electric field at the gaps of the interfaces 
are denoted by respectively (see Figure 
la). When only the TE lp mode is incident (with amplitude equal to unity) on 
this structure, only TE mo modes are excited [4]. The electromagnetic field in 
each of the regions I to IV can be expanded in a series of forward and backward 

traveling normal modes whereas that in region V has only forward traveling modes. 

Therefore, the transverse components of the electric and magnetic fields in each 
of the five regions can be written as 

and 
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and 

- flu 
The boundary conditions of the problem consist in the vanishing of the tangential 
(transverse) electric field over the metallic surfaces at each discontinuity and the 

continuity of the tangential electric and magnetic fields over the gaps. By choosing 
the functions X'(x) to vanish on the metallic surfaces of the discontinuities, the 
first boundary condition of the tangential electric field is automatically satisfied, 
i.e., Xi(x) must satisfy 

Since the quantities are equal to the tangential electric field at the dis- 

continuities, they can be used to eliminate the modal expansion coefficients, B§ 
and F,;,.t . More precisely, by equating the expressions given in equations (1) to 

(5) to the appropriate functions X(i)(x) we get 
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and 

The following notations were introduced for convenience 

The unknown functions will be determined from the requirement that 

the tangential magnetic field be continuous at each of the four interfaces. By 

using the expressions of the modal expansion coefficients as given by equations 

(9)-(13), in the modal expansions of the tangential magnetic field, we obtain a set 

of coupled integral equations in the functions More precisely, from the 

continuity of at interface I-II we get 

Similarly, from the continuity of at interface II-III 

From the continuity of at interface III-IV, 

And finally from interface IV-V 

Equations (15) to (18) are a set of linear coupled integral equations from which the 

scattering properties of the structure are determined. For example, the reflection 



1629 

coefficient is given by equation (9), whereas equation (13) gives the trans- 
mission coefficient. The intermediate regions are accurately taken into account 

although we are only interested in the overall performance of the structure. 
It can now be easily seen how the edge conditions can be included in the 

formulation from the outset and at each one of the discontinuities simultaneously. 
It is also evident that all the modes of the individual sections of the waveguides 
are included as they appear only in computing the sums (inner products in the 
moment method solution) which are tested for convergence. 

III. METHOD OF SOLUTION 

The four coupled integral equations (15)-(18) can be solved following the standard 
moment method for a single integral equation [14]. Each of the unknown functions 
is expanded in a series of basis functions and then some form of projection is 

performed on each of the integral equations. Since the gaps of the septums are 
all assumed equal, we use the same basis functions to expand the fields at the 
interfaces. Let Bi(x) denote a generic element of this set of basis functions. The 

unknown functions are written in the forms 

Using equations (19) in equations (15) to (18) and applying Galerkin's rnethod 

we get four sets of linear equations in the expansion coefficients cii) 

The entries of the matrices in equations (20) are given by 
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and 

To complete the solution, and guarantee numerical efficiency, a judicious choice 
of basis functions must be made. The tangential component of the electric field, 

Ey, at each of the interfaces has a singularity of the form z/ at x = al and 

vanishes as xi at z = 0 [15]. Taking into account the presence of the electric 
wall at x = 0, we use the following set of basis functions 

The transformed functions B(rri) are expressible in terms of Bessel functions of 
the first kind of order 1/6, namely [16] 

and 

Once the expansion coefficients are determined, the reflected power at interface 
I-II is easily computed from equation (9). Similarly, the power transmitted from 

region I to region V is obtained from equation (13). 
As the technique shows, the performance of the structure, i.e., its scattering 

properties are computable directly, in one step, without recourse to the individual 
matrix representations of each discontinuity. Also, since the modes of the waveg- 
uides are summed to compute the matrix elements in equations (21)-(24), and 
tested for convergence, the strength of the interaction between adjacent disconti- 
nuities is also accurately accounted for. The phenomenon of relative convergence 
is not encountered either as the sums are not truncated at a fixed threshold but 
rather tested for convergence. 
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The extension of the formulation to situations where more than one tangential 
component of the electric field are present, such as double plane discontinuities 
and circular waveguides, is straightforward although the algebra is admittedly 
more cumbersome. 

The case of three septums can be analyzed following similar steps. Appendix 
A summarizes the main results of the analysis and gives the expressions of the 
matrices involved. It becomes evident that large numbers of discontinuities can 

be effectively handled by the CIET. 
In the next section, we show how a bifurcation of finite length can also be 

accurately investigated using the present technique. 

IV. BIFURCATION OF FINITE LENGTH 

Bifurcations in waveguides are often encountered in duplexers and power dividers 
and combiners. In this section, we present an analysis of an H-plane bifurcation 
of finite length using the Coupled-Integral-Equations Technique (CIET). 

The structure under consideration is shown in Figure 1c. The bifurcation of 
thickness d and length L is illuminated by the fundamental mode TE 10 from the 
left side. We are concerned with the reflection and transmission properties of the 
structure. 

Using the standard Mode Matching Technique (MMT), one would determine 
the generalized scattering matrices of the individual discontinuities and then, from 

these, compute the scattering properties of the overall structure. Here we deter- 
mine the reflected and transmitted powers directly. 

As in the step discontinuities, we expand the fields in each region in modal 
series. In region I there are reflected waves in addition to the incident excitation 
TE 10 whereas the fields in regions II and III are a superposition of forward and 
backward traveling waves. In region IV there are only forward traveling waves. 
The fields in regions I and IV have the same expressions as those given by equations 

(3) and (4). In regions II and III we have the following expansions 

and 

In order to include the edge conditions at each of the discontinuities at z=0 and 

z=L, we introduce unknown functions which represent the tangential electric fields 
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at each of the four gaps. Let 

. <> . 

Using the modal expansions of the tangential electric field in the different re- 

gions, we can rewrite their modal expansion coefficients in terms of the unknown 
functions Z(4 . The algebra is straightforward resulting in the following equations 

and 

, 

Here the following notations were introduced 

To establish a set of coupled intergal equations for the unknown quantities 

Z(') (x) , equations (30) and (31) are used in the modal expansions of the tangen- 
tial magnetic fields, and then the continuity of Hx is enforced at each disconti- 

nuity. More specifically, from the continuity of Hx at interface I-II, 
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The continuity of Hx at interface I-III leads to 

Similarly, the continuity of at interface II-N gives 

And finally, the continuity of Hz at interface III-IV leads to 

These coupled integral equations are solved by the moment method as in the 
case of the the step discontinuities. Let and be basis functions for 
the tangential electric field at the gaps of regions II and III respectively. If the 
functions Z(i)(x) are expanded in series of the form 

and Galerkin's method applied to each of the integral equations (33) to (36), we 

get four sets of linear equations in the expansion coefficients 
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The entries of the matrices in equations (38) are given by 
00 

From the expressions of these matrices, it is clear that one needs to compute only 
the matrices [ A], [B], [C], [E] and [F], which are all symmetric except for [B]. It 
will be seen that only one or two basis functions are necessary to obtain accurate 
results for the reflected and transmitted powers. This reduces the number of sums 
to only 16 regardless of the strength of the interactions between the discontinuities 
when only the fundamental mode TE 10 is propagating. There is a considerable 
reduction in the numerical burden and an increase in the numerical efficiency over 
the standard Mode-Matching Technique (MMT). 

The choice of basis functions for the bifurcation is similar to the step discon- 

tinuity. A set of basis functions which take into account the edge conditions as 
well as the mirror images in the electric walls of the waveguides is given by 
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The transformed functions Q and P in each of the regions are given in terms of 
Bessel functions of the first kind of order 1/6 [16]. 

and 

The sums involved in the entries of the matrices in equations (38) contain terms 
in Bessel functions whose arguments are large (larger than 4). Asymptotic ex- 

pressions of these functions can be fruitfully used to quicken the computations of 
these sums. It is also possible to use the 'static' sums in connection with estab- 
lished techniques in computing (-function to further reduce the CPU time [17]. 
This issue is not addressed in this paper, as only small matrices are needed, but 
becomes important as the number of discontinuities analyzed using the present 
technique becomes large. 

V. RESULTS AND DISCUSSION 

The CIET is applied to a variety of configurations in order to establish its efficiency 
and validity. In all figures, the solid line is obtained with 5 basis functions, the 
dotted line with 3 basis functions, the dashed line with 2 basis functions and the 
dotted-dahed line with one basis function. 

The first structure we consider is an H-plane bifurcation as shown in Figure lc. 

Only the fundamental mode TE ip is assumed incident from the left side. The 

equations describing the scattering phenomenon are presented in Appendix B. 
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Figure 2. Magnitude, real part and imaginary part of B1 as a function 
of al /a for a bifurcation at 12 GHz and a = 2b = 19.5 mm, 
a2 = 4.8 mm for M = 1, 2, 3 and 5 basis functions. a) L = oo , 

b) L = 10 mm, c) L = 5 mm and d) L = 1 mm. 

Figure 2a shows the reflection coefficient B, of an infinitely long (L -- oo ) 
bifurcations as a function of al /a while the width of the second bifurcation ( a2 ) 
is kept equal to 4.8 mm at 12 GHz (a=2b=19.5mm, a2 = 4.8 mm). It can be 

clearly seen that the magnitude of the reflection coefficient is accurately predicted 
to be unity until one of the bifurcations is wide enough for the TE lp mode to 

propagate, i.e., when 0.64058. The convergence of the numerical solution 
is also evident as the difference between the results with M = 1 and M = 5 basis 
functions are minor over the entire range of ai /a . 

Figure 2b shows the same quantity for a bifurcation of length L=10 mm. As 

expected, the decrease of the magnitude of the reflection coefficient is now grad- 
ual and shows more structure after cutoff =0.64058) due to interference 
between the incident and reflected waves. The convergence of the numerical so- 
lution can also be clearly seen as the curves obtained with M = 2 and M = 5 
are practically indistinguishable. Similar conclusions can be drawn from Figures 
2c and 2d which represent the reflection coefficient for L=5 mm and L = 1 mm 
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respectively. It is worth mentioning that the strength of the interaction between 

adjacent discontinuities is accurately taken into account as can be seen from the 

convergence of the numerical solution when L is decreased. In the MMT, large 
individual scattering matrices are needed to accurately describe such interactions. 

To further test the technique, we analyze two and three cascaded septums. 

Figures 3 show the reflected and transmitted power from two septums for typical 
dimensions and M = 1, 2, 3, 4 and 5 basis functions at each of the discontinuities. 

Figure 3a is a plot of the reflection coefficient as a function of the width of the gap 

a1/a when the septums are 5 mm thick and separated by a distance of lmm. The 

convergence of the solution is again evident. Figure 3b shows the same quantity 
when the two septums are 5 mm thick and separated by a distance of 5 mm. 

Figure 3: Magnitude, real part and imaginary part of B, of two septums 
with a = 2b = 19.5 mm for M = 1, 2, 3, and 5 basis functions. 

a) as a function of al/a at 12 GHz with di = d3 = 14 mm 

and d2 = 5 mm b) dl = d3 = 5 mm and d2 = 5 mm 

We also examined the frequency response of the same structure over the fre- 

quency range of propagation of the fundamental mode TE 10. Figure 4 shows the 

reflection coefficient as a function of frequency when al =11 mm and a = 2b = 

19.5 mm. The convergence of the numerical solution over the range of propaga- 
tion of the fundamental mode, 7.68 GHz <_ F < 15.38 GHz, is documented as 

the results obtained with one and 5 basis functions practically coincide. It is also 

interesting to note that the local behavior of the real and imaginary parts, espe- 

cially at points where either one is changing rapidly such as at the onset of the 

second mode at F = 15.38 GHz, reflect well the causality conditions [18]. These 

conditions, often referred to as Kramers-Kronig relations, relate the real and imag- 

inary parts of any response function of a linear time invariant and causal physical 

system and can be used to test the plausibility of a given response function [19]. 
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Figure 4: Magnitude, real part and imaginary part of Bi of two septums 
as a function of frequency for M = 1, 2, 3 and 5 basis functions 
with a = 2b = 19.5 mm, a1 = 11 mm, d1 = d3 = 1 mrn and 

d2 = 5 mm. 

A more stringent test is presented by the three septums of Figure 1b. The CIET 

allows the analysis of the entire structure in one step regardless of the dimensions 
and the location of the septums. Figures 5 show the reflection coefficient of the 
structure. Figure 5a is a plot of the magnitude, the real and the imaginary 
parts of B, as a function of the width of the gap al /a at 12 GHz and with 

a = 2b = 19.5 mm. The septums are 5 mm thick and separated by a distance of 1 

mm. As in the case of two septums, the convergence of the numerical solution is 
well documented. Two basis functions are sufficient to accurately determined the 

reflection (transmission) properties of the structure. The interference of incident 

and reflected waves result in a richer reflection characteristics especially when 
the gaps are large enough to allow the incident fundamental mode to propagate 
through the system. Figure 5b shows the same quantity when the septums are 
5 mm thick and separated by a distance of 5 mm. Similar conclusions to those 
about Figure 5a hold for this case. 
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Figure 5: Magnitude, real part and imaginary part of Bi of three septums 
as a function of a1/a with a = 2b = 19.5 mm for M = l, 2, 3 
and 5 basis functions at 12 GHz. a) D - 1 = d3 = d5 = 1 
mm and d2 = d4 = 5 mm b) dl = d3 = d5 = 5 mm and 

d2 = d4 = 5 mm. 

The frequency response of the system is shown in Figure 6. Over the entire 

angle of propagation of the fundamental TE 10 mode in the larger waveguide, one 
)r at most two basis functions, are sufficient. Also, the causal properties of the 

earl and imaginary parts of the system are properly reflected by these results in 
he vicinity of frequencies where either of the two quantities is rapidly varying 
uch that its Hilbert transform is dominated by its local behavior. 

Figure 6: magnitude, real part and imaginary part of Bi of two septums 
as a function of frequency for M = 1, 2, 3 and 5 basis functions 
and a = 2b = 19.5 mm, a1 = 11 mm, 1 mm 
and d2 = d4 = 5 mm. 
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VI. CONCLUSIONS 

The Coupled-Integral-Equations Technique (CIET) was applied to accurately de- 
termine the reflection properties of multiple discontinuities in rectangular waveg- 
uides. A set of coupled integral equations for the tangential electric field at the 
discontinuities are derived and then solved by the moment method. Basis func- 
tions which include the edge conditions and mirror images in the walls of the 

waveguide were used to accelerate the convergence of the numerical solution. The 

technique allows the determination of the overall response functions of multiple 
discontinuities without using the matrix representations for the individual dis- 
continuities and regardless of the strength of their mutual interactions. A set of 
N discontinuities is accurately analyzed, and in one step, using a matrix of the 
order of 3N x 3N. Although only H-plane structures were considered, the tech- 

nique is straightforwardly applied to E-plane and double-plane structures as well 
as cylindrical waveguides. 

APPENDIX A 

In this appendix we summarize the formulation for the analysis of three H-plane 
septums by the CIET. The structure and coordinate system are shown in Figure 
lb. Let X(i), i = 1, 2,..6 denote the unknown tangential electric fields at the 

interfaces, (see Figure 1b). Expanding the Ey in each of the seven regions in 
terms of the modes of the appropriate section of the waveguide and expressing 
the modal expansion coefficients in terms of the transformed functions and 

matching the tangential magnetic fields at each of the 6 interfaces, we get six 

coupled integral equations. The functions X (') (x) are expanded in series of Basis 

functions, those used in the analysis of two septums as 

Applying Galerkin's method to the integral equations, we get six sets of linear 

equations in the expansion coefficients 

The entries of the matrices are given by the following expressions 
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and 

The basis functions and their transformed are given in equations (20) and (21) 
respectively. 
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APPENDIX B 

This appendix groups the main results for an infinitely long bifurcation (L o0 
in Figure lc). 

The tangential electric field at the two interfaces is denoted by Z(')(x) and 

Z(2) (x) respectively. By following the same steps as those that led to the integral 
equations for a bifurcation of finite length, two coupled integral equations are 
derived for Z(')(x) and and namely 

Expanding the functions in series of basis functions and Q k (z) as in equa- 
tions (30) and (31) and applying Galerkin's method, we get two linear sets of 

equations in the expansions coefficients and a() 

and 

where the matrices are given by 

and 
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