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Abstract: A comparative study of two
formulations based on a combination of the
mode-matching technique and the method of
moments is presented. Basis functions, which
include the edge conditions as well as mirror
images in the walls of the waveguide, are used to
accurately determine the properties of an
infinitely thin inductive iris. For small irises, d/a <
0.1, the formulation based on the induced surface
current converges with only one basis function.
Two basis functions are found sufficient for all
values of the width of the iris. However, the
formulation based on the tangential electric field
at the gap of the iris converges with only one
basis function for d/a > 0.1. Two parametric
functions involving Bessel functions of the first
kind of order 1/2, Ji, and J;, which approximate
the iris’s surface current and the electric field in
the gap are introduced. Numerical results for the
susceptance of the iris are compared with the
analytical  results; excellent agreement is
documented.

1 Introduction

Thin irises are frequently encountered in waveguide fil-
ters and matching systems. These structures have been
analysed using both analytic and numerical methods
[1]. The mode-matching technique (MMT) was applied
by Masterman et al. to the inductive iris problem [2].
The phenomenon of relative convergence in MMT in
relation to the iris problem was investigated by Lee et
al. [3] and in detail by Mittra et al. [4].

MMT is readily applied to these structures because
of their simple geometry. The MMT solution, however,
converges slowly because of its failure to include the
edge conditions. Recently, a set of basis functions,
which include the edge conditions, were used in a

© IEE, 1996
IEE Proceedings online no. 19960793

Paper first received 12th February 1996 and in revised form 29th July
1996

The authors are with the Laboratory for Lightwave Electronics, Micro-
waves and Communications (LLiMIC), Department of Electrical and
Computer Engineering, University of Victoria, Victoria B.C., Canada
V8W 3P6

IEE Proc.-Microw. Antennas Propag., Vol. 143, No. 6, December 1996

method-of-moments (MoM) solution of the infinitely
thin iris problem by Yang and Omar [5]. In their for-
mulation, the tangential electric field at the gap of the
iris is expanded in a series of basis functions which
include the edge conditions and are mirror-imaged in
the plane containing the iris. In addition, an extensive
investigation of the numerical properties on the MMT
in relation to the infinitely thin iris problem was pre-
sented by Sorrentino ez al. [6].

In this paper, a different set of basis functions, which
contain the edge conditions but are mirror-imaged in
the wall which is not in contact with the iris, are used
in a mode-matching-method-of-moments technique
(MMMoMT).

An alternative formulation consists in deriving an
integral equation for the induced current density on the
iris [6]. The MoM is then used to solve such an
equation by expanding the unknown current density in
a series of appropriate basis functions which include
the edge condition and are mirror-imaged in the plane
containing the iris.

2 Tangential electric field formulation (TEFF)

The structure under consideration is shown in Fig. 1.
The walls of the rectangular waveguide and the iris of
width d are assumed to be perfectly conducting. We
also assume that only the fundamental mode TE),,
with amplitude equal to unity, is incident on the iris.

a
Fig.1 Inductive iris of width d in a rectangular waveguide of cross sec-
tion a times b
a =2b=19.5mm

Following the mode-matching technique, the tangen-
tial electric and magnetic fields on each side of the iris
are expanded in the TE,; modes of the waveguide as
these are the only modes excited at the iris. The details
are not presented here but can be found in [7], for
example.

El(w,2=0) = i (6m1 + Bu) sin [mﬁg] (1a)
m=1
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EM(z,2 = Z F,, sin [mw } (1b)
Hl (s i Yo (=61 + By,) sin [mwg} (2a)
H(z,2=0) ZY F,, sin [mﬂz] (2b)

m=1
The wave admittances Y,, are given in [7], B,, and F,,
are unknown expansion coefficients.
The tangential clectric field at the gap Eg,,(x), i
easily shown to satisfy the following integral equatmn
[4, 6, 8]:

mi;lym{g /g  Bunply)sin [ ]dy}sin [

:Ylsin[ﬂfﬂ, d<z<a (3)

By concentrating on the tangential electric field at the
gap, we are able to include in the theory whatever a
priori information we have about this quantity, such as
the edge conditions, for example.

Therefore, we expand E,,, in a series of basis func-

tions Ef(x) such that
M
) = Z ciBi(x) 4)

The value of M is increased until convergence is
reached. The expansion coefficients are determined
using the standard Galerkin’s method [9]. By taking the
mner product of eqn. 3 against the basis functions we
get a linear set of equations in the coefficients ¢;

[Alle] = [T] (5)
The entries of the square and symmetric matrix [A] and
the column vector T are given by

Egop(x

Al =Y YnEi(m)E;(m) (6a)
[T]; = 1 E;(1) (60)

where, for convenience, the following notation was
introduced:

Ei(n) = %/;E (x) sin [mw } dx (7)

3 Surface current formulation (SCF)

An alternative formulation consists in deriving an inte-
gral equation for the induced current density on the iris
instead of the tangential electric field at the gap. The
tangential electric and magnetic fields, at the plane of
the iris, are still given by eqns. 1 and 2.

From the discontinuity of H, and the continuity of
E, along with the vanishing of E, over the iris, we get
the following integral equation for the surface current

density J,(x) [6]:
Z —1—jy(m) sin l:mﬂ‘%] = 2sin [WS] , 0<z<d (8)

Yo
=1
where the transform Jis now given by
- 2 79
Jy(n) = Ef Jy () sin [mr ] dz 9)
0

If the current density is now expanded in a series of
basis functions J(x) with expansion coefficients b, and
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Galerkin’s method is applied to eqn. 8, we get a set of
linear equations

[W][b] = [S] (10)
The square and symmetric matrix [W] and the column
vector [S] are given by

[W];; = Z Jim)J;(m) (11)

and

[S]s = 2Ji(1) (12)
4 Basis functions

To guarantee numerical efficiency, the basis functions
should approximate the quantity under consideration
reasonably well. In particular, they should contain
information about the edge conditions. The tangential
electric field E,,, is known to approach zero at x = d as

x'2 and vanishes at x = a as x! [10]. We also include
the mirror image in the wall located at x = a. A set of
basis functions which satisfy these requirements is

given by

sin {kﬂ'a d]
[(z—d)(2a —d — x)]*/2
The integrals involved in eqn. 3 can be expressed in
terms of the Bessel function J; {11]. Similar arguments

lead to the following set of basis functions for the sur-
face current density:

_sin [(2k — D]
@) = =

The integrals in eqn. 9 can also be expressed in terms
of the Bessel function J; [11].

Ey(z) = E=1,2,... (13)

k=1,2,... (14)

5 Results

The two formulations are used to determined the
reflection properties of an infinitely thin inductive iris.
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Flg 2 Real part, imaginary part and magnitude of the reflection coeffi-
cient B, as a function of d/a as obtained from TEFF
a/A =038 for M = 1, 2, 3, 4 and 5 basis functions

Fig. 2 shows the real part, the imaginary part and
magnitude of the reflection coefficient B; as a function
of dla for M = 1, 2, 3, 4 and 5 basis functions as
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obtained from the tangential electric field formulation.
The convergence of the numerical solution is evident.
Except for the imaginary part when d/a < 0.1, one basis
function is sufficient.

The same quantities as obtained from the
formulation based on the induced current density are
shown in Fig. 3 . The results obtained with only one
basis function are accurate only for the range d/a < 0.5.
Two or more basis functions are, however, sufficient
over the entire range of d/a.
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Fig.3 Real part, imaginary part and magnitude of the reflection coeffi-
cient B, as a function of dia as obtained from SCF
a/A =08 for M =1, 2, 3, 4 and 5 basis functions
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Fig.4 Zy/X.wh, as a function of dla when w/h = 0.8
results from TEFF

Fig. 4 is a plot of the quantity ZyX.a/A, as a
function of d/a when a/A, = 0.8 as obtained from the
tangential electric field formulation. The solid line is
the analytic expression given by Marcuvitz [8]. Again,
it can easily be seen that the agreement between the
numerical results and the analytical solution is
excellent.

Fig. 5 shows Zy/X.a/A, obtained from the surface
current formulation. Two or more basis functions are

IEE Proc.-Microw. Antennas Propag., Vol. 143, No. 6, December 1996

sufficient to guarantee convergence over the entire
range of d/a.
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Fig.5 Zy/X.a/A, as a function of dla when a/A = 0.8
results from SCF

Although accurate results over the entire range of d/a
can be obtained with a single basis function when the
two formulations are combined, these basis functions
do not coincide with the asymptotic solutions of
Maxwell’s equations. Starting from the fact that the
asymptotic solution of Maxwell’s equations, at the edge
of an infinitely thin perfect conductor, can be expressed
in terms of the Bessel function Ji, [10], simple
approximate solutions can be constructed. The
tangential electric field E, approaches Ji(ox) as x —
d* and J|(ox) as x — a. Taking the mirror image in the
electric wall at x = g, a simple function which satisfies
these asymptotic properties is given by

Re{a,z) = Ji 2oz — d))Ji 220 — d — z)] 1 [efa — )]

(15)
It is found numerically that the function Rz{a = 0.95,
x) approximates the real part of the electric field very
accurately (Fig. 6).
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Similarly, the surface current density is approximated
by a function of the form

Ri(v,2) = J{pp(v(d = 2)] + I jp[v(d + z)] (16)
It was found that by choosing y = 0.8, the real part of
the surface current density can be approximated very
accurately by this function (Fig. 6).

6 Conclusions

A detailed comparative study of two formulations of
the inductive infinitely thin iris problem was presented
along with two new sets of basis functions which con-
tain the edge conditions and are mirror-imaged in the
appropriate metallic wall of the rectangular waveguide.
The formulation based on an integral equation for the
tangential electric field at the gap converges to the ana-
lytic solution of the susceptance of the iris with only
one basis function in the range d/a > 0.1, while the for-
mulation based on the surface current density on the
iris converges in the range d/a < 0.5 under the same
conditions. Both formulations converge to the exact
solutions when two or more basis functions are used
over the entire range of d/a.
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