
Ž .Figure 3 a Monostatic copolar RCS of a square anisotropic flat
Ž . Žplate L s 76 mm illuminated at normal incidence Z s 0 andx

. Ž .Z rz s 0, 0.1, 0.2, 0.5, 1, 2, 5, 10 . b Monostatic cross-polar RCS ofy
Ž .a square anisotropic flat plate L s 76 mm illuminated at normal

Ž .incidence Z s 0 and Z rz s 0, 0.1, 0.2, 0.5, 1, 2, 5, 10x y

Ž .Figure 4 Monostatic copolar RCS of a cube side L s 76 mm in
the u-polarization case. Solid line: perfectly conducting cube, PO;
dashed line: perfectly conducting cube, PO plus ILDCs; dotted line:
perfectly conducting cube with top face anisotropic, PO

w xcalculations by resorting to suitable ILDCs 6 for edges in
w xanisotropic impedance surfaces. As emphasized in 6 , they

w x w xcan be determined once either exact 7, 8 or approximate 9
solutions, in terms of Sommerfeld’s integrals, are known for
the corresponding canonical wedge problem, which locally
approximates the actual configuration of the scatterer. This
topic will be the object of future work.
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( )ABSTRACT: An efficient technique to locate minima zeros in the
smallest singular ¨alue of a singular ¨alue decomposition, as used to
sol̈ e eigen¨alue problems in electromagnetics, is presented. The effi-
ciency of the technique depends only on the a¨ailability of a sufficiently
accurate representation of the smallest singular ¨alue; the sharpness of
the peaks is of minor rele¨ance. The technique is applied to determine
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the cutoff wa¨e numbers of a ridge circular wa¨eguide to demonstrate its
efficiency. Q 1997 John Wiley & Sons, Inc. Microwave Opt Technol
Lett 14: 318]321, 1997.

Key words: circular wa¨eguides; singular-̈ alue decomposition; eigen-
¨alues

I. INTRODUCTION

Linear eigenvalue problems are widespread in electromagnet-
ics and other branches of physics, engineering, and applied
mathematics. The numerical solution of such problems is
often reduced to finding the roots of a determinant, or
equivalently, the zeros of the smallest singular value of the

w xcorresponding matrix 1 .
In integral-equation formulation of eigenvalue problems

in electromagnetics, the method of moments, which trans-
forms the integral equation into a set of linear equations in
the expansion coefficients, is often the method of choice
w x Ž .2, 3 . Similarly, the mode-matching technique MMT leads
to a homogeneous set of linear equations in the modal

w xexpansion coefficients 4 . Other methods, such as the method
Ž . Ž .of lines MoL , the finite-element technique FET and the

Ž .spectral-domain approach SDA also lead to a homogeneous
set of linear equations. It is therefore evident that most
eigenvalue problems in electromagnetics involve the same
issue: locate the zeros of a determinant.

A well-known problem is that the determinant often ex-
hibits poles that are not easy to handle numerically. An
alternative solution is offered by the singular value decompo-

w xsition of the matrix in question 1 . In this approach, the zeros
of the smallest singular value, which is pole free, are located
instead. However, despite the absence of the poles in this
technique, some of the minima are extremely sharp. In addi-
tion, it is in general much harder to determine a minimum of
a function than one of its zeros.

To solve this problem, we present a technique that incor-
porates both the advantage of having a pole-free function
and the ease of locating the zero of a function instead of a
minimum. The gist of the technique consists of noticing that
the derivative of the smallest singular value changes sign at a
minimum. Starting from an accurate enough description of
the smallest singular value, by computing it at a large enough
number of points, a cubic spline is used to approximate its
first derivative. Despite the fact that approximating a deriva-
tive is less reliable than approximating a function, the changes
in sign of the derivative are less problematic. The solutions of
the original eigenvalue problem are then determined from
the zeros of the first derivative where a sign change from
negative to positive takes place.

To illustrate the technique, the cutoff wave numbers of a
ridge circular waveguide are determined and compared with
available data.

II. FIRST DERIVATIVE WITH THE USE OF CUBIC SPLINES

The subject of cubic splines is discussed in ample detail in
many books on numerical analysis; only essential points are

w xsummarized here 4, 5 .
The idea of a cubic spline consists of replacing an original

Ž .function f x by local third-order polynomials and requiring
the continuity of the function and its first two derivatives at
the grid points. Let us assume that the function is given at a
set of N points x , where it assumes values y . In the intervali i
w xx , x , the original function is replaced by the polynomiali iq1

w x4

Ž . Ž . Ž . Ž . Ž . Ž .W x s A x y q B x y q C x z q D x z . 1i iq1 i iq1

Here

x y xiq1Ž . Ž .A x s , 2a
x y xiq1 i

x y xiŽ . Ž .B x s , 2b
x y xiq1 i

1 23Ž . Ž Ž . Ž ..Ž . Ž .C x s A x y A x x y x 2ciq1 i6

and

1 23Ž . Ž Ž . Ž ..Ž . Ž .D x s B x y B x x y x . 2diq1 i6

The quantities z are determined from requiring the firsti
derivative to be continuous at the points x . A tridiagonal seti

w xof linear equations in z s results 4 . Once these are deter-i
mined, the first derivative at the grid points x are obtainedi

Ž .from differentiating Eq. 1 . Note that the tridiagonal set is
solvable only if two additional conditions are given. If the
second derivative is assumed to vanish at the end points x1

w xand x , the cubic spline is referred to as natural 5 .N
In the present work, we apply the natural cubic spline to

locate the minima in the smallest singular value in the
solution for the cutoff wave numbers of transverse-electric
modes of a ridge circular waveguide by an integral equation
formulation. Only the modes with an electric wall along the
plane of symmetry are considered.

III. CUTOFF WAVE NUMBERS OF A RIDGE CIRCULAR
WAVEGUIDE

The problem of determining the cutoff wave numbers of a
ridge circular waveguide can be formulated in variety of ways.
Here, because we are mostly interested in the actual determi-
nation of the cutoff wave numbers as the zeros of the
smallest singular value, the nature of the technique to calcu-
late the electromagnetic field is of little relevance. In this
particular case, the coupled-integral-equations technique
Ž . w xCIET was used 6 .

A typical plot of the smallest singular value as a function
of k a, where a is the radius of the empty circular waveguide,c
is shown in Figure 1. The dips in the plot are the locations of
the cutoff wave numbers. The curve in this figure was ob-
tained from 500 data points.

Instead of locating these minima directly, we proceed to
determine the values of the first derivative at the 500 data
points with the use of cubic splines. Furthermore, we are only
interested in the changes in the sign of the derivative; its
actual values are of little importance. Figure 2 shows a plot of
the sign of the first derivative thus obtained along with the
smallest singular value. It is obvious that each minimum
corresponds to a change in sign of the derivative from nega-
tive to positive. For example, the first sign change is not a
minimum, as it occurs in the order positive to negative
instead of negative to positive. Note also that the location of
the minima are accurately predicted from the sign of the
derivative.

Given the data in Figure 2, it is straightforward to deter-
mine the locations of the minima. For that, we analyze the
sign of the derivative at two consecutive points x and x .i iq1
Once a sign change is found, its location is a root if the
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Figure 1 Smallest singular value as a function of k a of a ridgec
Ž .circular waveguide see inset . u s 58 and bra s 0.8

Figure 2 Smallest singular value and sign of first derivative as
obtained from cubic splines. Dimensions are those of Figure 1

derivative shows the proper sign change, that is, from nega-
tive to positive. The procedure is continued until the point xN
is reached.

A more stringent test of the technique is provided by the
plot of the singular value, as shown in Figure 3, which
corresponds to a ridge circular waveguide with u s 58 and
bra s 0.99. Figure 4 shows the sign of the derivative along
with the smallest singular value. It is evident that the location
of the minima is again accurately predicted by the present
technique. The accuracy of the technique depends on the
number of data points used in generating the plots of the
minimum singular value. When large matrices are used,
thereby requiring large CPU times, the present technique is
useful in providing reliable starting points and reduces the
CPU time.

Figure 3 Cutoff wave numbers of the first two TE modes as a
function of the depth of the ridge with u s 58 and bra s 0.99

Figure 4 Smallest singular value and sign of first derivative as
obtained from cubic splines. Dimensions are those of Figure 3

It takes 0.48 s to locate the seven minima in Figures 1 and
3 on an IBM RSr6000 530 machine.

IV. CONCLUSIONS

A technique to locate the minima of the smallest singular
value as encountered in eigenvalue problems in electromag-
netics was presented. The first derivative of the smallest
singular value is computed with the use of cubic splines; the
minima are determined from the changes in the sign of the
first derivative from negative to positive. Numerical results
for the cutoff wave numbers of TE modes of a ridge circular
waveguide were used to demonstrate the efficiency of the
technique.
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IEEE Trans. Microwä e Theory Tech., to be published.

Q 1997 John Wiley & Sons, Inc.
CCC 0895-2477r97

A NEW SOURCE FORMULATION FOR
FDTD SIMULATION OF
HIGH-FREQUENCY INTEGRATED
CIRCUITS WITH AND WITHOUT
GROUND PLANES
Xudong Wang1 and R. Jennifer Hwu,1
1 Electrical Engineering Department
University of Utah
Salt Lake City, Utah 84112
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ABSTRACT: A new ¨oltage source formulation for FDTD is reported in
this article. By stimulating the ¨oltage source right in the plane of the
strip line, this new source formulation can be used in the simulation of
a wide ¨ariety of high-frequency integrated circuits, including those
without ground planes. Compared with existing source formulations, the
new source formulation is also relatï ely simple for most circuit simula-
tions, because, since its relation to the actual source ¨oltage is fairly
straightforward. In addition to numerical calculations to show the ¨alida-
tion, we present in this article the applications of this method in
ad¨anced high-frequency integrated circuits such as quasioptical diode
array and coplanar wa¨eguide nonlinear transmission lines. Q 1997 John
Wiley & Sons, Inc. Microwave Opt Technol Lett 14: 321]324, 1997.

Key words: finite-difference time domain; quasioptical diode array;
high-frequency integrated circuits

1. INTRODUCTION

Ž .In recent years the finite-difference]time-domain FDTD
method has been widely used for modeling high-frequency

w xintegrated circuits 1]7 . Source formulation is an essential
element in the FDTD technique. Several different source
formulations are employed for the simulation of microstrip

w xlines 2, 5]7 . Among these source formulations, the hard
w x w xvoltage source 2 , added voltage source 5 , and current

w xsource 6 use the same excitation region to excite a mi-
crostrip line. To be specific, voltage or current is imposed
between the metal strip line and the ground plane in these
methods. Therefore, these methods cannot be used directly in
the FDTD simulation of high-frequency integrated circuits
without ground planes. Very recently, a new method has been
developed for which the line feed consists of obtaining the
static map of the electric field in a plane perpendicular to the

w xpropagation vector 7 . In this article a new source formula-
tion is reported. By imposing the voltage source directly in

the plane of the strip line, our new source formulation can be
used easily in the FDTD simulation of a large variety of
high-frequency integrated circuits with and without ground
planes, such as microstrip lines, coplanar waveguides, slot
lines, etc.

2. NOVEL EXCITATION TECHNIQUE

Figure 1 shows the new source formulation developed by us
for modeling various high-frequency integrated circuits. The
stimulus is considered as an ideal voltage source in this new
approach. For the case of a microstrip line, rather than
exciting the line from the rectangular area underneath the

wmetallization of the microstrip as for previous methods 2, 5,
x6 , the voltage source is imposed across a gap in the metal

strip in our approach. This idea is consistent with the classical
circuit theory in that voltages are usually imposed in series
with source impedances and circuits, while currents are in
parallel.

The electric field E across the gap has the following
relation with the voltage of the stimulus:

VS Ž .E s , 1S D x

where E is the imposed electric field, V is the voltageS S
source, and D x is the length of the gap.

Because we apply a hard source to the gap, the tangent
components of the scattering electric fields in the gap are
forced to be zero by the hard source. The source formulation
acts as though there were a perfect conductor plane in the
gap that is right next to the source. In other words, the hard
source imposes the effect of perfect conductor cells, so the
insertion of the gap does not affect the modeling of the strip
line and no discontinuities are created by the gap. It thus can
be considered, as there is no gap in the strip line and signals
in the circuit can propagate fluently both in the incident and
reflected directions. As a result, the perfectly matched layer
Ž . Ž .PML absorbing boundary condition ABC used at the
source end can effectively absorb the backward traveling
wave reflected from the terminal.

The PML structure in this case can be considered as the
internal impedance of the voltage source. Because the PML
is perfectly matched to the microstrip line, the source
impedance, therefore, equals the characteristic impedance of
the microstrip line. The equivalent circuit of a microstrip line
with this new source formulation can therefore be con-
structed as shown in Figure 2, where Z is the characteristic0
impedance of the microstrip line.

When circuits are stimulated in the same way as in Fig-
Ž .ure 2 as most practical circuits do , the electric field is

Ž .directly related to the actual voltage source by Eq. 1 . This
w xrelation is relatively straightforward compared to those of 5

w xand 6 . Note that the current of the current source is V rZs 0
w x5 , and the voltage of the added voltage source is V s D t ?

w xV r« wZ , where w is the width of the strip line 6 . Z needss 0 0
to be known before the current source and added voltage
source can be related to the actual voltage of a circuit.

w xAlthough the hard voltage source 2 , like our method, can be
easily related to the actual voltage of a circuit, there is no
absorbing boundary condition that can be used effectively in
the source plane. It is clear that our new source formulation
is simpler and more convenient to use than previous meth-
ods. It should be pointed out that our new voltage source
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