
Ž . Ž .tute 24 in 39 to obtain the field from the image. Noting
that the integral contains a Fourier transformation of the

w xGaussian pulse, which has a known solution 8 ,

` 2 2 2 2 2yjk at yz r8 s y2 s k a1 1' Ž .e e dz s 8p s e , 40H
y`

we can write with a s cos ui

12 2 2r y2 s k cos u y jk r1 i 1 1Ž .E r f .e y= = u M L e .z 0ž /4p r1

Ž .41

This expression can be interpreted as follows. The term in
square brackets is the far field from a vertical magnetic
dipole at z s yz . The factor in front is the specular reflec-0
tion coefficient R s .1, and the Gaussian term in betweens

Ž . Ž .equals that of 2 , the effect of the rough surface. Thus, 41
can be interpreted through the ray theory and Fresnel reflec-
tion from the rough surface.

Similar considerations can be made for the more general
source and medium cases, omitted here for conciseness.

4. CONCLUSION AND DISCUSSION

Image theory, previously developed for problems involving a
smooth planar interface of two media, was extended to take
into account a slight roughness of the interface. The analysis
was based on the simple reflection coefficient expression
corresponding to the coherent reflection field, for roughness
obeying Gaussian statistics. The resulting image was seen to
be the convolution of the specular image and a Gaussian
pulse, which gives a blurred specular image.

The change in the amplitude of the coherent reflected
wave due to the roughness of the surface can be easily
interpreted in terms of the image theory. When a point image
becomes a line image of Gaussian distribution, the ensuing
phase differences causes partial cancellation in the radiated
field. This effect is most notable in the normal direction and
disappears in the direction tangential to the interface.

The image principle described in the article can be ap-
plied to a wide variety of problems involving a rough surface.
For example, scattering from an object above a rough surface
can be handled by replacing the object through an equivalent
polarization source, which can be determined by replacing
the material half space by the images of the original source
and that of the unknown equivalent source. Limitations to
the application of the theory are due to the simple starting
point: the reflection coefficient expression requires that the
source be sufficiently far from the interface and the rough-
ness be slight enough.
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ABSTRACT: The poles in the determinantal equation of the standard
( )modal field-matching technique MFMT are systematically eliminated,

which results in well-beha¨ed determinants. The pole-free characteristic
matrix is shown to take a simple form. Excellent agreement between
results from the present technique and pre¨iously published data is
established. Q 1997 John Wiley & Sons, Inc. Microwave Opt Technol
Lett 14: 337]340, 1997.
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I. INTRODUCTION

Eigenvalue problems in numerical modeling of electromag-
netic phenomena are often reduced to a homogeneous matrix
equation of the form

w Ž .x w x Ž .A k x s 0. 1

w Ž .x w xHere A k is a parameter-dependent n = n matrix and x
w xis an unknown n-element vector 1, 2 . The parameter k

often denotes the propagation constant, resonant frequency,
Ž .or cutoff wave number. Nontrivial solutions to Eq. 1 are

w Ž .xobtained when the matrix A k becomes singular, or

w Ž .x Ž .Det A k s 0, k s k 20

for a certain value k of the parameter k.0
Ž .The actual solution of Eq. 2 is often hindered by the

presence of poles in the determinant of the characteristic
w Ž .x Ž .matrix A k . The modal field-matching technique MFMT

is a typical numerical method that suffers from these patholo-
gies. Reliable computer codes can be developed only when
these poles are recognized and efficiently handled.

Attempts at solving this problem are custom made and
tailored to specific problems where the locations of the poles
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Figure 1 Cross section of a ridged rectangular waveguide and its
subdivision for modal analysis

are determined in a first step to determine the zeros in the
w xsecond step 3, 4 . The efficiency of such an approach is

limited and requires extra CPU time to identify and eliminate
the poles.

In this article we examine the origin of the poles in the
determinantal equation within the MFMT. These numerical
singularities are traced back to inversions of singular matrices

w Ž .xin constructing the characteristic matrix A k . By carefully
avoiding such operations, we show how to construct a pole-
free characteristic matrix, thereby systematically eliminating
the poles that appear in the standard MFMT.

II. CUTOFF WAVE-NUMBERS RIDGED RECTANGULAR
WAVEGUIDE

The cross section of a ridged rectangular waveguide is shown
in Figure 1. All metallic walls are assumed lossless.

Given the symmetry of the structure, its modes can be
split into sets with magnetic and electric wall symmetries.
Only TE modes with a magnetic wall are analyzed in detail
here, although numerical results will be given for both sym-
metries.

The transverse components of the electromagnetic field of
these modes can derived from its axial component H . Thez
following expansions are used in the two subregions:

` 2 2n y 1 x
I Ž . w x Ž .H x , y s A cosh g y sin p 3aÝ (z n 1n a 2 ans1

and

`
I Ž . w Ž .xH x , y s B cosh g y y c y dÝz m 2 m

ms 0

2 x y s
Ž .= cos mp . 3b(Ž .Ž .a y s 1 q d a y sm0

Here

2 22n y 1 mp
2 2 2g s p y k , g s y k ,1n c 2 m cž /ž /2 a a y s

and k is the cutoff wave number.c
At cutoff, the only E and E are nonvanishing, in addi-x y

tion to H . It is consequently sufficient to enforce the conti-z

nuity of E and H at the interface I]II. The boundaryx z
conditions of the these modes can be written as

I Ž . II Ž . Ž .H x , y s c s H x , y s c , s F x F a, 4az z

I Ž . Ž .E x , y s c s 0, 0 F x F s, 4bx

and

I Ž . II Ž . Ž .E x , y s c s E x , y s c , s F x F a. 4cx x

Ž . Ž .In the standard MFMT, Eqs. 3 are used in Eqs. 4 to
obtain two sets of linear and homogeneous equations in the

w x w xexpansion coefficients A and B :

w x w x w xA s C B ,

w x w x w x Ž .B s D A , 5

where

w xg sinh g d 22m 2 mw xC s ynm w xg sinh g d Ž .Ž .a a y s 1 q d'1n 1n m0

Ž .2n y 1 p x x y sa
= sin cos mp dxH 2 a a y ss

w xg sinh g d2m 2 m w x Ž .s y L 6anmw xg sinh g c1n 1n

and

w xcosh g c 21mw xD snm w xcosh g c Ž .Ž .a a y s 1 q d'2n n0

Ž .2m y 1 p x x y sa
= sin cos np dxH 2 a a y ss

w xcosh g c1m w x Ž .s L . 6bmnw xcosh g d2n

w x Ž .If we eliminate A from Eq. 5 , for example, get

�w x w x w x4 w x Ž .D C y U B s 0, 7

w x Ž .where U is the unit matrix. Nontrivial solutions to Eq. 7
exist only when

�w x w x w x4 Ž .Det D C y U s 0. 8

The cutoff wave numbers of the structure are given by this
determinantal equation. The actual determination of these
cutoff wave numbers is, however, hindered by the presence of

Ž . Ž .poles in the determinant in Eq. 8 , as Figure 2 a clearly
shows. Even if one only searches for the sign changes in the
determinant, the presence of the poles presents a real diffi-
culty as the determinant changes sign in the vicinity of a pole,
thereby introducing nonphysical roots.
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Ž .Figure 2 Determinant as a function of k radrmm when N s 3.c
Ž . Ž . Ž .a Standard MFMT and b pole-free MFMT this work

To eliminate these poles, we have to identify their origin
w x w xfirst. It is clear from the form of the matrices C and D

that poles are present in the determinant whenever a denom-
w x w xinator in either C or D vanishes. To avoid these singulari-

Ž . Ž .ties, we use expansions 3 in the boundary conditions 4 to
get

w Ž w x.x w x w x w Ž w x.x w xdiag g sinh g c A s y L diag g sinh g d B ,1 1 2 2

Ž .9a

and

Tw Ž w x.x w x w x w Ž w x.x w x Ž .diag cosh g d B s L diag cosh g c A . 9b2 1

w Ž w x.x w Ž w x.xH ere , diag g sin h g c , d iag g sin h g c ,1 1 2 2
w Ž w x.x w Ž w x.xdiag cosh g d , and diag cosh g c are diagonal matrices,2 1

w x Ž .and L is defined in Eqs. 6 .
Ž . Ž .Using Eq. 9b in 9a , we get

y1 Tw x w Ž w x.x w Ž w x.x w xL diag g sinh g d diag cosh g d L� 2 2 2

=w Ž w x.xdiag cosh g c1

w Ž w x.x w x Ž .q diag g sinh g c A s 0. 1041 1

Ž .In its present form, Eq. 10 contains the inverse of
w Ž w x.xdiag cosh g d , which introduces poles for some imaginary2

Ž .values of g . We therefore multiply Eq. 10 from the left by2
w xy1L to get

y1 Tw Ž w x.x w Ž w x.x w xdiag cosh g d diag g sin h g d L� 2 2 2

=w Ž w x.xdiag cosh g c1

y1w x w Ž w x.x w x Ž .q L diag g sinh g c A s 0. 1141 1

Note that the order of the two diagonal matrices following
w x Ž .L in Eq. 10 was reversed, as two diagonal matrices always

Ž .commute. Finally, by multiplying Eq. 11 from the left by
w Ž w x.xdiag cosh g d , we get a pole-free matrix equation:2

y1�w Ž w x.x w x w Ž w x.xdiag cosh g d L diag g sinh g c2 1 1

Tw Ž w x.x w x w Ž w x.x4 w xq diag g sinh g d L diag cosh g c A s 0.2 2 1

Ž .12

The cutoff wave numbers are given by the roots of the
w xdeterminant of the matrix K , given by

y1w x w Ž w x.x w x w Ž w x.xK s diag cosh g d L diag g sinh g c2 1 1

Tw Ž w x.x w x w Ž w x.x Ž .q diag g sinh g d L diag cosh g c . 132 2 1

w xNote that the matrix K involves diagonal matrices and takes
the following simple form:

y1w x w x w x w xK s cosh g d L g sinh g cmn mn2 m 1n 1n

w x w x w x Ž .q g sin h g d L cosh g c . 14nm2 m 2 m 1n

w x Ž .The determinant of the matrix K is pole free, as Figure 2 b
w xshows. Even though the matrix K involves inverting the

w xmatrix L , this is done only once at the beginning of the
w xsearch for the roots, as L is independent of the wave

number k .c

( )TABLE 1 Cutoff Wave Numbers rad ///// mm of the First Eight TE Modes in a Single-Ridge Waveguide

Mode 1 2 3 4 5 6 7 8

Pole-free MFMT 0.0928 0.3332 0.3808 0.5260 0.6654 0.6911 0.7456 0.8290
w xRef. 5 0.0930 0.3332 0.3881 0.5265 0.6654 0.6913 0.7456 0.8298
w xRef. 6 0.0928 0.3332 0.3810 0.5262 0.6654 0.6912 0.7456 0.8294

a s b s 9.5 mm, s s 0.15 mm, c s 1.7 mm, d s 7.8 mm.

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 14, No. 6, April 20 1997 339



( )TABLE 2 Cutoff Wave Numbers rad ///// mm of the First Eight TM Modes in a Single-Ridge Waveguide

Mode 1 2 3 4 5 6 7 8

Pole-free MFMT 0.4711 0.4714 0.7411 0.7416 0.7477 0.7485 0.9396 0.9420
w xRef. 5 0.4665 0.7358 0.9427

a s b s 9.5 mm, s s 0.15 mm, c s 1.7 mm, d s 7.8 mm

III. NUMERICAL RESULTS

The present pole-free formulation of the modal field-match-
Ž .ing technique MFMT is applied to determine the cutoff

wave numbers of a ridged rectangular waveguide.
Table 1 gives the cutoff wave numbers k in radrmm ofc

the first eight TE modes with a magnetic wall symmetry. Our
w xresults agree well with those presented in References 5 and

w x6 . In computing these results, the sign of the determinant of
w x Ž .the matrix K in Eq. 14 was used, instead of its actual

numerical value in conjunction with the bisection method. By
using the sign of the determinant, overflows and underflows

w xare avoided by proper scaling of the entries of the matrix K .
Ten modes were found sufficient to achieve convergence.

Table 2 gives the cutoff wave numbers of the first eight
TM modes. Both symmetries are included in this table. Note

w xthat some of the roots were not reported in Reference 5 .
Good agreement is again observed between our result and

w xthe roots reported in 5 .

IV. CONCLUSION

A pole-free formulation of the modal field-matching tech-
Ž .nique MFMT was applied to determine the spectrum of a

ridged rectangular waveguide. The poles that plague the
standard MFMT are systematically eliminated from the deter-
minantal equation without requiring prior knowledge of their
location or nature. Numerical results from the present formu-
lation are in excellent agreement with previously published
data.
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ABSTRACT: Ferrites, which are used in many microwa¨e de¨ices as
circulators or isolators, ha¨e complex geometries. When subjected to a
magnetic field ferrites exhibit anisotropic and dispersï e permeability. If
this magnetic field is orthogonal to the direction of propagation the ferrite
is characterized by an effectï e permeability m that can be eithereff
positï e or negatï e. Many ferrite de¨ices work in a frequency range where
m is negatï e. The particular beha¨ior of ferrite in this case is studiedeff

( )in this article with the use of the finite-difference]time-domain FDTD
method. First phenomena are presented in a one-dimensional case; then
a new two-dimensional FDTD algorithm is presented. Q 1997 John
Wiley & Sons, Inc. Microwave Opt Technol Lett 14: 340]344, 1997.

Key words: ferrite; effectï e permeability; finite-difference]time-domain

I. INTRODUCTION

Many authors have applied the FDTD method to the study of
w xa saturated ferrite medium 1]6 . They present results in a

frequency range where the effective permeability of ferrite is
positive. The behavior of the material is completely different

w xwhen its effective permeability is negative 7 . In this article
the propagation in ferrite when m - 0 is studied by FDTD.eff
Criteria for good discretization are defined for the first time.
The reflection coefficient at an interface air ferrite is calcu-
lated in a 1D case. At last a new 2D FDTD algorithm is
developed to study a ferrite with negative effective permeabil-
ity. This algorithm is validated by computation of resonant
frequencies and field patterns of a ferrite resonant device.

II. THE FERRITE MEDIUM } EFFECTIVE PERMEABILITY

The ferrite is an anisotropic and dispersive medium with a
Ž . Ž .tensorial permeability m . m depends on frequency and on˜ ˜

Ž .the static magnetic field. In the harmonic domain m can be˜
w xwritten for a lossless saturated ferrite 7, 8 .

m yjK 0 v v0 MŽ .m s m , with m s 1 q ,jK m 0˜ 0 2 2v y vž / 00 0 1
Ž .1

vvM
K s y ,2 2v y v0
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