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SUMMARY
A generalized modal scattering matrix formulation is presented for the calculation of discontinuity-distorted
waveguide multiport junctions. Unlike common approaches based on three-plane mode-matching techniques,
and modifications thereof, which calculate only the fundamental-mode scattering matrix, this algorithm
computes the generalized modal scattering matrix of the junction. Therefore, the method allows the computation
of components in which other structures are connected as closely as possible to the discontinuity-distorted
junction as follows directly from the rigorous incorporation of all higher-order mode interactions. The method
is demonstrated at three selected examples: the waveguide corner, the T-junction power divider and the
orthomode transducer. Comparison with results obtained by other numerical techniques or measurements
available from the literature are found to be in good agreement. 1997 by John Wiley & Sons, Ltd.

Int. J. Numer. Model.,10, 153–167 (1997)

No. of Figures: 6. No. of Tables: 0. No. of References: 20.

1. INTRODUCTION

Modern antenna feed systems for satellite applications frequently require connections of several
rectangular waveguides at a certain location. The principal tasks associated with such multiport
junctions include power division and multiplexing,1–4 beamforming,5 and polarization discrimi-
nation.6–8 The theoretical analysis is mostly concerned with, first, deriving the scattering matrix
of the junction and, second, connecting scattering matrices of other components to individual
branches in order to obtain the performance of an entire (sub)system.

Computer-aided design procedures have adopted two fundamental approaches to model multiple
waveguide junctions:

1. As long as the so-called resonator region — formed by the connection of at least two
waveguides at right-angles — is homogeneous, i.e. it can be represented by a well-known set
of cavity functions, a resonator model9 can be applied to yield the generalized modal scattering
matrix of the junction. This has been demonstrated in publications involving waveguide corners,
e.g. Reference 9, numerous papers onE- or H-plane T-junctions, of which only References 1
and 2 are representatively referenced here, and a contribution on the six-port cross-junction.10

2. The second approach is solely based on the analysis of two-ports, e.g. Reference 11. Branching
ports are initially represented by shorts some distance away from the junction. A number of
theoretical experiments (e.g. three for a T-junction) with varying locations of the shorting
planes provide sufficient knowledge to extract the scattering parameters of the multiport junction
under investigation.3–5

The advantage of this second method resides in the fact that it allows discontinuities in the
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resonator region to be incorporated in a straightforward fashion since the fundamental algorithm
evaluates two-port discontinuities only. However, although these two-port discontinuities are
analysed for their generalized scattering matrices, some submatrices of the generalized multiport
junction will always dependnon-linearily on those of the two-ports. (In the case of a T-junction,
the dependence is given by a square-root function.) Since the resulting non-linear matrix equation
system cannot, in general, be solved for the complete set of submatrices, only the fundamental-
mode scattering matrix of the entire multiport junction can be extracted. This is explicitly pointed
out in Reference 5: ‘These [shorting] planes are located far enough so as not to perturb the
reactive fields in the proximity of the discontinuity.’ Therefore, if following circuitry is connected
at a smaller distance, which is necessary in orthomode transducers or compact multiplexer designs,
e.g. Reference 12, or, in other words, if higher-order modesdo interact and perturb the reactive
fields in the proximity of the discontinuity, then this analysis — frequently referred to as three-plane
mode matching — is invalid. Recent publications on this theory13,14 are essentially modifications of
References 3–5 and 11. (It should be pointed out, however, that the authors of Reference 5
subsequently solved similar waveguide junctions based on a generalized multiport description, e.g.
References 18–20.)

Therefore, this paper focuses on the presentation of the generalized modal scattering matrix for
mode-matching problems involving discontinuity-distorted multiport junctions. Alternatively, the
short-circuit admittance matrix15 or the open-circuit impedance matrix, e.g. Reference 6 could be
derived with essentially the same principles as applied here. These two approaches are considered
advantageous with respect to computation time but lead to some numerical complications for
extremely short subsections (both admittance and impedance matrices do not exist for zero-length
discontinuities15 and for a very high number of modes as required, e.g. in elliptic-function-type
filter and multiplexer arrangements.17

Since such problems cannot occur in the more general — but admittedly more CPU-time
intensive — scattering-matrix formulation, we will focus on exactly this procedure. It allows the
entire generalized scattering matrix of a discontinuity-distorted multiport waveguide junction to be
calculated without restrictions for connected components. Based on the rigorous field-theory
treatment of discontinuities within the resonator region, a complete set of matching conditions at
the junction’s interfaces is derived. Consequently, higher-order mode interactions are not only
considered in the calculation but are, equally importantly, appropriately represented at the multiport
junction interfaces, thus allowing computation and inclusion of other components connected at
zero distance to the junction.

While, in the following, the theoretical treatment will be demonstrated at the example of a
discontinuity-distorted T-junction, the extension of this technique to applications involving, for
example, a discontinuity-distorted six-port cross-junction is straightforward. In this paper, results
are presented for waveguide corners, T-junction power dividers and orthomode transducers — all
of which with some discontinuities within the junction region. Good agreement with results
obtained by other numerical techniques or measurements is observed. Although theory and
examples focus exclusively on cases of two-dimensional distortions within the junction region, the
principal formulation for the general three-dimensional case is addressed at the end of Section 2.

2. THEORY

Figure 1 shows the discontinuity-distorted T-junction with an additional double-plane step in the
interface of the branching waveguide. To formulate the electromagnetic field representation of the
junction, the configuration is first subdivided into the three cross-sectional regions I, II and III
and the discontinuity-distorted resonator region IV (Figure 2a). The expressions for the tangential
field components in the connected waveguides I to III are:

E⇀I
T = [ e⇀eI

T u e⇀mI
T ] · diag {ÎZe,mI

p,q } ·

[diag {exp [−jke,mI
zp,qz]} AI + diag {exp[jke,mI

zp,qz]} BI]

H⇀I
T = [ h⇀eI

T u h⇀mI
T ] · diag {ÎYe,mI

p,q } ·

[diag {exp [−jke,mI
zp,qz]} AI − diag {exp[jke,mI

zp,qz]} BI] (1)
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Figure 1. Rectangular-waveguide T-junction with discontinuity-distorted junction region and double-plane step in the
interface of the branching waveguide

Figure 2. Superposition principle for field-theory treatment and subdivisions of resonator region: (a) T-junction with
discontinuities; (b) subdivisions to match port I; (c) subdivisions to match port II; (d) subdivisions to match port III

E⇀II
T = [ e⇀eII

T u e⇀mII
T ] · diag {ÎZe,mII

p,q } ·

[diag {exp [−jke,mII
zp,q (z − cn)]} BII + diag {exp[jke,mII

zp,q (z − cn)]} A II]

H⇀II
T = [ h⇀eII

T u h⇀mII
T ] · diag {ÎYe,mII

p,q } ·

[diag {exp [−jke,mII
zp,q (z − cn)]} BII − diag {exp[jke,mII

zp,q (z − cn)]} AII ] (2)
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E⇀III
T = [ e⇀eIII

T u e⇀mIII
T ] · diag {ÎZe,mIII

p,q } ·

[diag {exp [−jke,mIII
yp,q (y − bn)]} BIII + diag {exp[jke,mIII

yp,q (y − bn)]} AIII ]

H⇀III
T = [ h⇀eIII

T u h⇀mIII
T ] · diag {ÎYe,mIII

p,q } ·

[diag {exp [−jke,mIII
yp,q (y − bn)]} BIII − diag {exp[jke,mIII

yp,q (y − bn)]} AIII ] (3)

with well-known cross-section eigenvectorse⇀e,m
T , h⇀e,m

T , wave impedancesZe,m
p,q = 1/Ye,m

p,q and propa-
gation constantske,m

zp,q, ke,m
yp,q. In the discontinuity-distorted resonator region IV, the electromagnetic

field is determined by three solutions IV(1), IV(2) and IV(3), corresponding to individual boundary
conditions (Figure 2). These regions IV are appropriately subdivided into two sets of subregions.
The first set, applicable to IV(1) and IV(2), is a subdivision of region IV having all subregion
interfaces perpendicular to thez-axis and the second set, pertaining to IV(3), having the subregion
interfaces perpendicular to they-axis. These subregions are labelled IVm1, IVm2,%, IVmn, and
IVb1, IVb2, %, IVbn, respectively, wheren is the total number of subregions in each direction
(cf. Figures 2(b), (c), (d) ). Note that the individual solutions to subregions IV(1), IV(2) and IV(3)
correspond to short-circuit boundaries at the interfaces of the respective other two ports. This
would be identical in an admittance matrix formulation. Alternatively, we could impose open-
circuit boundary conditions — as required for an impedance matrix algorithm — and adjust the
field representations for subregions IV(1), IV(2) and IV(3) within the junction region accordingly.

At this point, it is essential to note that the subregions IVm1, IVmn and IVb1 must have the
same cross-section dimensions as waveguides I, II and III, respectively. Although this requirement
applies universally, it is equally important to note that there is no loss of generality because of
it. Furthermore, Figure 2 shows no variation along thex-axis even though this formulation will
accommodate such a variation. Both of these situations are addressed at the end of this Section.

Starting with region IV(1) as detailed in Figure 2(b), the tangential electromagnetic fields in
each region IVmi are written as

E⇀IVmi
T = [ e⇀eIVmi

T u e⇀mIVmi
T ] · diag {ÎZe,mIVmi

p,q } ·

[diag {exp [−jke,mIVmi
zp,q (z − cj−1)]} A(1)i + diag {exp[jke,mIVmi

zp,q (z − cj−1)]} B(1)i]

H⇀IVmi
T = [ h⇀eIVmi

T u h⇀mIVmi
T ] · diag {ÎZe,mIVmi

p,q } ·

[diag {exp [−jke,mIVmi
zp,q (z − cj−1)]} A(1)i − diag {exp[jke,mIVmi

zp,q (z − cj−1)]} B(1)i] (4)

The tangential electric and magnetic fields are matched at the common interfacesz = cj for j =
1, 2, 3,%, n−1 between the subregions to yield the generalized scattering matrix at each interface.
These scattering matrices are cascaded,along with the homogeneous empty waveguide sections
between them, to yield a scattering matrix from anyz-co-ordinate plane to another in region
IV(1). Now, with a short circuit atz = cn, a reflection coefficient may be defined at each interface
z = cj for j = 1, 2, 3, %, n−1 by

G(1)
i−1 = SIVm

11i−1→n − SIVm
12i−1→n [I + SIVm

22i−1→n]−1 SIVm
21i−1→n (5)

Using this modal reflection coefficient and introducing transfer matricesT(1)
Ai−1 and T (1)

Bi−1, the wave
amplitudes in each subregion may be expressed in terms of those of subregion IVm1. That is,
the wave amplitudesA(1)i and B(1)i in the ith region are related to the wave amplitudeA(1)1 in
region IVm1 by

A(1)i = [I − SIVm
220→i−1G

(1)
i−1]SIVm

210→i−1A(1)1 = T(1)
Ai−1A(1)1 (6)

B(1)i = G(1)
i−1A(1)i = G(1)

i−1T(1)
Ai−1A(1)1 = T(1)

Bi−1A(1)1 (7)

Since the subdivisions for IV(1) (Figure 2(b)) and IV(2) (Figure 2(c) ) are identical, the scattering
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matrices (5)–(7) at each interfacez = cj for j = 1, 2, 3, %, n−1 may be applied to IV(2) by
switching the appropriate submatrices. The scattering matrix between subregions IVmi+1 and IVmi
as seen in Figures 2(b), (c) is

FA(2)i+1

B(2)i G = FS(1)i
22 S(1)i

21

S(1)i
12 S(1)i

11
G FB(2)i+1

A(2)i G = FS(2)i
11 S(2)i

12

S(2)i
21 S(2)i

22
G FB(2)i+1

A(2)i G at z = cj (8)

Applying the boundary condition atz = 0, a modal reflection coefficient and transfer matrices
may once again be defined at the interfaces

G(2)
i = SIVm

11i→0 − SIVm
12i→0 [I + SIVm

22i→0]−1 SIVm
21i→0 (9)

B(2)i = [I − SIVm
22i→0G

(2)
i ] SIVm

21i→0B(2)n = T(2)
Bi B(2)n

A(2)i = G(2)
i−1B(2)i = G(2)

i−1T(2)
Bi−1B(2)n = G(2)

Ai−1B(2)n (10)

so that all the amplitude coefficients for IV(2) (Figure 2(c) ) can be expressed in a single unknown
amplitude coefficientB(2)n in region IVmn.

Finally, region IV(3) is subdivided according to Figure 2(d), and the tangential fields for each
subregion are written as

E⇀IVbi
T = [ e⇀eIVbi

T u e⇀mIVbi
T ] · diag {ÎZe,mIVbi

p,q } ·

[diag {exp [−jke,mIVbi
yp,q (y − bn−i+1)]} B(3)i + diag {exp[jke,mIVbi

yp,q (y − bn−i+1)]} A(3)i]

H⇀IVbi
T = [ h⇀eIVbi

T u h⇀mIVbi
T ] · diag {ÎYe,mIVbi

p,q } ·

[diag {exp [−jke,mIVbi
yp,q (y − bn−i+1)]} B(3)i − diag {exp[jke,mIVbi

yp,q (y − bn−i+1)]} A(3)i] (11)

Again, the fields are matched at the common interfaces to yield the generalized scattering matrices,
and an overall scattering matrix between any twoy-co-ordinate planes in region IV(3) may be
calculated. With the boundary conditionB(3)n = − A(3)n at y = 0, a reflection coefficient and
transfer matrices may be defined for each subregion interface, and all amplitude coefficients in
region IV(3) may be written in terms of the single unknown coefficientA(3)1,

G(3)
n−i+1 =SIVb

11n−i+1→0 − SIVb
12n−i+1→0 [I + SIVb

22n−i+1→0]−1 SIVb
21n−i+1→0 (12)

A(3)i = [I − SIVb
22n→n−i+1G

(3)
n−i+1] SIVb

21n→n−i+1A(3)1 = T(3)
An−i+1A(3)1

B(3)i = G(3)
n−i+1A(3)i = G(3)

n−i+1T(3)
An−i+1A(3)1 = T(3)1

Bn−i+1A(3)1 (13)

In summary, all fields within the resonator region can now be expressed in terms of three still
unknown coefficients in the subregions adjacent to waveguides I, II and III,

E⇀IV (x, y, z) = On
i=1

[ E⇀(1)i + E⇀(2)i + E⇀(3)i] (14)

with

E⇀(1)i = {[ e⇀eIVmi
T u e⇀mIVmi

T + emIVmi
z ûz] diag [ÎZe,mIVmi

p,q exp [−jke,mIVmi
zp,q (z − ci−1)]]T(1)

Ai−1

+ [ e⇀eIVmi
T u e⇀mIVmi

T − emIVmi
z ûz] diag [ÎZe,mIVmi

p,q exp[jke,mIVmi
zp,q (z − ci−1)]]T(1)

Bi−1} A(1)1

E⇀(2)i = {[ e⇀IVmi
T u e⇀mIVmi

T + emIVmi
z ûz] diag [ÎZe,mIVmi

p,q exp [−jke,mIVmi
zp,q (z − ci)]]T(2)

Ai
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+ [ e⇀eIVmi
T u e⇀mIVmi

T − emIVmi
z ûz] diag [ÎZe,mIVmi

p,q exp[jke,mIVmi
zp,q (z − ci)]]T(2)

Bi } B(2)n

E⇀(3)i = {[ e⇀IVbi
T u e⇀mIVbi

T + emIVbi
y ûy] diag [ÎZe,mIVbi

p,q exp [−jke,mIVbi
yp,q (y − bn−i+1)]]T(3)

Bn−i+1

+ [ e⇀eIVbi
T u e⇀mIVbi

T − emIVbi
y ûy] diag [ÎZe,mIVbi

p,q exp[jke,mIVbi
yp,q (y − bn−i+1)]]T(3)

An−i+1} A(3)1 (15)

where the appropriate longitudinal terms have been added as they represent transverse components
with respect to the branching waveguides.

The field continuity condition at z= 0 for the tangential electric field is

E⇀I
x,y = E⇀IV

x,y = On
i=1

[ E⇀(1)i
x,y + E⇀(2)i

x,y + E⇀(3)i
x,y ] = E⇀ (1)1

x,y (16)

It is important to observe that, as a consequence of the choice of solutions IV(1), IV(2) and
IV(3), only one single term remains in the summation over the subregions. This is consistent with
mode-matching formulations for the homogeneous T-junction, e.g. References 1, 2 and 12.
Applying the matching equation for the electric fields in (1), (15), as well as orthogonality and
integrating over the interface area yields the relationship between the amplitude coefficients in
waveguide I and the resonator region

A(1)1 = [I + GI]−1 [AI + BI] (17)

Similarly, equating the electric fields atz = cn and y = bn

E⇀II
x,y = E⇀(2)n

x,y and E⇀III
x,z = E⇀ (3)1

x,z (18)

results in

B(2)n = [I + GII ]−1 [AII + BII]

A(3)1 = [I + GIII ]−1 [AIII + BIII ] (19)

and completes the matching procedure for the electric fields at the three junction interfaces.
Using (17) and (19), the magnetic fields in the resonator region may be completely expressed

in terms of the amplitude coefficients in waveguides I, II, and III,

H⇀IV (x, y, z) = On
i=1

[ H⇀(1)i + H⇀(2)i + H⇀(3)i] (20)

where

H⇀(1)i = {[ h⇀eIVmi
T + heIVmi

z ûzu h⇀mIVmi
T ] diag [ÎYe,mIVmi

p,q exp [−jke,mIVmi
zp,q (z − ci−1)]]T(1)

Ai−1

− [ h⇀eIVmi
T − heIVmi

z ûzu h⇀mIVmi
T ] diag [ÎYe,mIVmi

p,q exp[jke,mIVmi
zp,q (z − ci−1)]]T(1)

Bi−1} M I[AI + BI]

H⇀(2)i = {[ h⇀eIVmi
T + heIVmi

z ûzu h⇀mIVmi
T ] diag [ÎYe,mIVmi

p,q exp [−jke,mIVmi
zp,q (z − ci)]]T(2)

Ai

− [ h⇀eIVmi
T − heIVmi

z ûzu h⇀mIVmi
T ] diag [ÎYe,mIVmi

p,q exp[jke,mIVmi
zp,q (z − ci)]]T(2)

Bi } M II [AII + BII]

H⇀(3)i = {[ h⇀eIVbi
T + heIVbi

y ûyu h⇀mIVbi
T ] diag [ÎYe,mIVbi

p,q exp [−jke,mIVbi
yp,q (y − bj)]]T(3)

Bj
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− [ h⇀eIVbi
T − heIVbi

y ûyu h⇀mIVbi
T ] diag [ÎYe,mIVbi

p,q exp[jke,mIVbi
yp,q (y − bj)]]T(3)

Aj } M III [AIII + BIII ] (21)

and

M I = [I − GI]−1, M II = [I − GII]−1, M III = [I − GIII ]−1 (22)

Matching the magnetic fields at the interfaces between waveguides I, II and III with the
discontinuity-distorted resonator region will relate the amplitude coefficients to yield the desired
generalized scattering matrix of the junction. The continuity equations atz = 0, cn and aty = bn

for the tangential magnetic fields are

H⇀I
x,y = H⇀ IV

x,y = On
i=1

[ H⇀(1)i
x,y + H⇀(2)i

x,y + H⇀ (3)i
x,y ] = H⇀(1)1

x,y + H⇀(2)1
x,y + On

i=1

H⇀(3)i
x,y at z = 0 (23)

H⇀II
x,y = H⇀ IV

x,y = H⇀(1)n
x,y + H⇀(2)n

x,y + On
i=1

H⇀(3)i
x,y at z = cn (24)

H⇀III
x,z = H⇀ IV

x,z = On
i=1

H⇀(1)i
x,z + On

i=1

H⇀(2)i
x,z + H⇀ (3)1

x,z at y = bn (25)

which, when integrated over the respective interface areas and employing the principles of
orthogonality, result in the matrix equation

3 −I − [I − GI] M I − [U(2)
A T(2)

A0 − U(2)
B T(2)

B0] M II − VI−(3)M III

− [U(1)
A T(1)

An−1 − U(1)
B T(1)

Bn−1] M I I + [I − GII] M II − VII−(2)M III

− VIII −(1)M I − VIII −(2)M II I + [I − GIII ]M III
4 3 BI

BII

BIII
4

= 3 −I + [I − GI] M I [U(2)
A T(2)

A0 − U(2)
B T(2)

B0] M II VI−(3)M III

[U(1)
A T(1)

An−1 − U(1)
B T(1)

Bn−1] M I I − [I − GII] M II VII−(2)M III

VIII −(1)M I VIII −(2)M II I − [I − GIII ]M III
4 3 AI

AII

AIII
4 (26)

from which the generalized scattering matrix of the discontinuity-distorted junction

3 BI

BII

BIII
4 = 3S11 S12 S13

S21 S22 S23

S31 S32 S33

4 3 AI

AII

AIII
4 (27)

can be derived as demonstrated in Appendix I. The remaining abbreviations used in (26) are
detailed in Appendix II.

Now it is possible to address the two points deferred earlier in this Section. Firstly, the
formulation can, indeed, accommodate discontinuities with variations along thex-axis. The incorpor-
ation of such a discontinuity is accomplished by determining its generalized scattering matrix and
following the above formulation — now, however, with the possibility of a subregion in IV being
further subdivided, thus producing an internal summation of its own. Secondly, with regard to the
condition requiring that adjacent subregions to connecting waveguides have the same cross-
sectional dimensions: in configurations where discontinuities appear in an aperture, the problem
may be addressed by the insertion of the required subregion and the mathematical reduction of
its length to zero. Consequently, other circuit components can be connected to the multiport
junction at zero length without any restrictions on the mode spectra at either side of the aperture.
Since all fundamental and higher-order modes are appropriately related to each other, the concept
of the generalized scattering matrix is fully preserved.

 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Model.,10, 153–167 (1997)
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3. RESULTS

Three configurations are selected for the verification and demonstration of this theory. They are
the rectangular-waveguide corner, theE-plane T-junction power divider and the rectangular-
waveguide orthomode transducer. Although it is not the intention of this appraoch to be used for
modelling mitred discontinuities, reference data for the type of discontinuities investigated in this
paper are difficult to find as they have not been exploited yet for circuit design, simply
because of the lack of sufficient CAD tools. Therefore, we will compare our theory with some
mitred structures.

Figure 3 shows a comparison for the example of a mitred waveguide corner.16 The structure is
used in dual-mode operation with square waveguide cross-sections. It is analysed by neglecting
region II and solution IV(2) in the theory to form a discontinuity-distorted corner junction. Since
a full-mode spectrum is used, both polarizations (modes TE10 and TE01) are obtained simultaneously
as elements of the generalized scattering matrix. Figure 3(a) shows the results for the vertical
(TE10-mode) polarization. The convergence analysis — with respect to the number of steps to
approximate the mitre — indicates that nine to 12 steps are a good mitre approximation for this
polarization. A similar analysis regarding the number of modes (not shown) produces sufficient
convergence behaviour at 20–25 modes. Good agreement with the results of Reference 16 is
observed in Figure 3(a), except for the resonance effect around 9 GHz. Unfortunately, the spacing
of measured data in frequency is relatively wide in Reference 16 so that the resonance cannot be
confirmed exactly. However, this effect is well known in square-waveguide applications, e.g.
Reference 6, where it appears below the TE11-mode cutoff frequency. In this case, TE11-mode
cutoff occurs at 9·27GHz as indicated by the small dips in the computed results at that frequency.

Figure 3. Input return loss of mitred dual-mode square waveguide corner. Dimensions:a = b = c = d = 22·86 mm; 45°
mitre16 approximated by constant stepping withc1 = bn−1 = 5·08 mm; (a) vertical polarization; (b) horizontal polarization

Int. J. Numer. Model.,10, 153–167 (1997)  1997 by John Wiley & Sons, Ltd.
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The results for the horizontal (TE01-mode) polarization are shown in Figure 3(b). Since the
electric field vector is now tangential to the mitre, a stepped approximation must show a more
pronounced frequency dependence than the straight mitre. As a consequence, and in order to
compare our computations with the mitred results of Reference 16, the number of steps in our
model need to be increased (results for up to 15 steps are shown in Figure 3(b) ). Moreover, as
the number of steps is increased, the individual staircase sections become shorter, thus requiring
more higher-order modes to be included (up to 35 modes are used here). Considering these points
under the restriction of finite computer resources, it is obvious that good agreement with the
straight mitre of Reference 16 — for horizontal polarization — can only be achieved over a
limited frequency range. With 15 steps and 35 modes, agreement is good between 7·5 and 9
GHz. Note that this horizontal (TE01-mode) polarization couples only with higher-order TE0n-mode
field configurations. Therefore, the response is not affected by the TE11 mode.

180 degreeE-plane bends are frequently used in beam-forming networks. For such a structure,
a comparison between our results and those of a finite-element analysis is presented in Figure 4.
In our approach, the generalized modal scattering matrices of the two discontinuity-distorted
corners are calculated and properly cascaded. Owing to the interaction of modes between the two
90 degree corners, it is important to consider the full-mode spectrum in the cascading process, as
is done with this theory. Very good agreement is achieved with a five-step approximation of the
mitres. Note that discrepancies are observed mainly beyond the 30dB level. Therefore, it is idle
to argue in favour of the accuracy of either one of the two numerical techniques, finite element
or mode matching.

Figures 5 show the performances related to the T-junction power divider. For a first verification
of the theory, the single-step T-junction power divider of Reference 1 has been recalculated with
this method. By using the technique of inserting a subregion and reducing its mathematical length
to zero (as explained in the theory section), the singleE-plane step is placed directly in the
aperture (inset Figure 5(a) ). Good agreement within the readability of the data in Reference 1 is
obtained for both return loss (Figure 5(a) ) and insertion loss (Figure 5(b) ).

Several experiments have been conducted with additional steps in the junction region. Owing
to the multiple-step approach and its effective size reduction of the junction area, the return loss
no longer exhibits a relatively narrow peak but broadens over the frequency range of interest.
This is demonstrated by a five-step design in Figure 5(a) (solid line). Consequently, a minimum
return-loss performance of 22 dB can be provided (compared to 15·5 dB in Reference 1) over
the entire frequency range 10–16 GHz. Due to its improved return loss, the component with five
steps in the junction exhibits slightly better power division (solid lines in Figure 5(b)) than the
standard junction design. A power division within+0·9 and−0·6 dB is obtained over the entire
frequency range of Figure 5. (The respective values in Reference 1 are+1·3 and−0·8 dB.)

At the example of a rectangular-waveguide orthomode transducer proposed in Reference 7 and
sketched in Figure 6(a), Figure 6(b) compares the measurements of Reference 7 with the results
of this technique. Note that this component requires the computation of the full generalized

Figure 4. Comparison of this method with finite-element method (FEM) at a 180 degreeE-plane bend.12 Dimension: a =
d = 19·05 mm,b = 5·08 mm,c = 4·826 mm, vertical separation between rectangular guides= 6·096 mm; 45° mitres12

approximated by five steps withc1 = bn−1 = 0·659 mm
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Figure 5. Performance ofE-plane T-junction power divider. Dimensions:a = d = 2b1 = 15·799 mm,b2 = 4·41 mm,b3 =
4·38 mm.1 Undistorted junction: this method (dashed lines); data from Reference 1 (+++). Stepped junction: this method
(solid line); 18·5° mitre approximated by five steps withc1 = 0 and bn−1 = b1 − b2; (a) input return loss; (b) insertion

loss

scattering matrix of the discontinuity-distorted junction region as the matching iris in the branching
waveguide is connected to the junction at zero distance. Therefore, virtually all higher-order modes
interact. The analysis of this component with the so-called three-plane mode-matching technique,
or modifications thereof, would be highly questionable due to its restriction to the fundamental-
mode scattering matrix of the discontinuity-distorted junction. Since our technique includes such
higher-order mode effects, good agreement with measurements in Reference 7 can be observed
(Figure 6(b) ). The discrepancies are attributed to the fact that the linear taper in Reference 7 has
been approximated by a 25-step staircase function in this theory.

With 25 modes in each of the subregions, the computation of this structure requires 20 min of
CPU time per frequency point on an IBM RISC 6000/530 workstation. The maximum time
required for other structures might be estimated from this value as the CPU time depends — as
a rough first-order approximation — linearily on the number of steps in the junction region and
increases with the third power (corresponding to matrix inversion) with the number of modes.

4. CONCLUSION

A new generalized scattering matrix formulation for discontinuity-distorted waveguide multiport
junctions is presented. Since the discontinuities in the junction region are rigorously taken into
account, with their influences transformed to the interfaces with the connected rectangular wavegu-
ides, the generalized scattering matrix — as opposed to hitherto known fundamental-mode
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Figure 6. Rectangular-waveguide orthomode transducer according to Reference 7. Dimensions (a) and VSWR comparison
(b). This method (solid lines), measurement (+++) of Reference 7. Note that the continuous transition in Reference 7 is

approximated by a 25-step approach

parameters — of such structures can be calculated. At the examples of waveguide corners, a T-
junction power divider and an orthomode transducer, good agreement with other techniques and
measurements available from the literature is demonstrated.
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APPENDIX I. From (26) to (27)

Of course, (26) can be solved by simple matrix inversion. However, computation efficiency can
best be served by a submatrix-based approach. Therefore, (26) is rewritten as

3−I − M −M 2 −M3

−M4 I + M 5 −M6

−M7 −M 8 I + M 9

4 3 BI

BII

BIII
4 = 3−I + M1 M2 M 3

M 4 I− M 5 M 6

M 7 M 8 I − M9

3 AI

AII

AIII
4 (28)

and the variableB is partially separated by

BI = N1N2BIII + N1N2AI + N1N4AII + N1N2AIII

BII = N5N6BIII + N5N7AI + N5N8AII + N5N6AIII (29)

with

N1 = [−(I + M1) + M2 (I + M 5)−1 M 4]−1 N5 = [−(I + M 5) + M 4 (I + M 1)−1M 2]−1

N2 = M 3 + M 2 (I + M 5)−1 M6 N6 = M6 + M4 (I + M 1)−1 M 3

N3 = − (I − M 1) + M 2 (I + M 5)−1 M4 N7 = M4 [I + (I + M 1)−1 (I − M 1)]

N4 = M 2 [I + (I + M5)−1 (I − M 5)] N8 = (I − M 5) − M 4 (I + M 1)−1 M2 (30)

Hence,

BIII = S31AI + S32AII + S33AIII (31)

where

S31 = Y[M 7 (I + N1N3) + M 8N5N7]

S32 = Y[M 8 + M 7N1N4 + M8N5N8]

S33 = Y [(I + M9) + M7N1N2 + M 8N5N6] (32)

and

Y = [(I + M 9) − M 7N1N2 − M8N5N6]−1 (33)

This now allows the expression of the complete generalized scattering matrix as

BI = S11AI + S12AII + S13AIII

BII = S21AI + S22AII + S23AIII (34)

where

S11 = N1[N2S31 + N3] S21 = N5[N6S31 + N7]

S12 = N1[N2S32 + N4] S22 = N5[N6S32 + N8]

S13 = N1N2[S33 + I ] S23 = N5N6 [S33 + I ] (35)

Five matrix inversions of one-third the size of the original matrix (26) are required by this
algorithm, which reduces the CPU time to 1/5·4 of that of a single inversion in (26).
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APPENDIX II. Abbreviations in (26)

In (26), matricesU are given by

U(1)
A = diag {exp [−jke,mIVmn

zp,q (cn − cn−1)]}

U(1)
B = diag {exp [jke,mIVmn

zp,q (cn − cn−1)]}

U(2)
A = diag {exp [jke,mIVm1

zp,q c1]}

U(2)
B = diag {exp [−jke,mIVm1

zp,q c1]} (36)

and matricesV contain the coupling matrices for the junction:

VI−(3) = On
i=1

[+K I−(3)iT(3)
Bn−i+1 − −K

I−(3)i
T(3)

An−i+1]

VII−(3) = On
i=1

[+K II−(3)iT(3)
Bn−i+1 − −K

II−(3)i
T(3)

An−i+1]

VIII −(1) = On
i=1

[+K III −(1)iT(1)
Ai−1 − −K III −(1)iT(1)

Bi−1]

VIII −(2) = On
i=1

[+K III −(2)iT(2)
Ai − −K

III −(2)i
T(2)

Bi ] (37)

For q = I, II, these coupling matrices are of the form

±Kq−(3) = 3±Kq−(3)
11

±Kq−(3)
12

±Kq−(3)
21

±Kq−(3)
22 4 (38)

where

±K q−(3)i
11pq = ÎZej

p ÎYeIVbi
q E

DSj

h⇀ej
Tp · ( h⇀ eIVbi

Tq ± heIVbi
yq ûy) exp [7jkeIVbi

yq (y − b(q)i)]-S

±K q−(3)i
12pq = ÎZej

p ÎYmIVbi
q E

DSj

h⇀ej
Tp · h⇀mIVbi

Tq exp [7jkmIVbi
yq (y − b(q)i)]-S

±K q−(3)i
21pq = ÎZmj

p ÎYeIVbi
q E

DSj

h⇀mj
Tp · ( h⇀eIVbi

Tq ± heIVbi
yq ûy) exp [7jkeIVbi

yq (y − b(q)i)]-S

±K q−(3)i
22pq = ÎZmj

p ÎYmIVbi
q E

DSj

h⇀mj
Tp · h⇀mIVbi

Tq exp [7jkmIVbi
yq (y − b(q)i)]-S (39)

and for n = 1, 2

±K III −(n) = F±K III −(n)
11

±K III −(n)
12

±K III −(n)
21

±K III −(n)
22

G (40)

where

±K III −(n)i
11pq = ÎZeIII

p ÎYeIVmi
q E

DSIII
h⇀eIII

Tp · (h⇀ eIVmi
Tq ± heIVmi

zq ûz) exp [7jkeIVmi
zq (z − c(n)i)]-S
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±K III −(n)i
12pq = ÎZeIII

p ÎYmIVmi
q E

DSIII
h⇀eIII

Tp · h⇀mIVmi
Tq exp [7jkmIVmi

zq (z − c(n)i)]-S

±K III −(n)i
21pq = ÎZmIII

p ÎYeIVmi
q E

DS
III

h⇀mIII
Tp · ( h⇀eIVmi

Tq ± heIVmi
zq ûz) exp [7jkeIVmi

zq (z − c(n)i)]-S

±K III −(n)i
22pq = ÎZmIII

p ÎYmIVmi
q E

DSIII
h⇀mIII

Tp · h⇀mIVmi
Tq exp [± jkmIVmi

zq (z − c(n)i)]-S (41)

and the subscripts onb and c are the co-ordinate shifts for each region. It may be noted that the
submatrices in (38) and (40) cover all possible combinations of modal coupling, i.e. TE-to-TE,
TE–TM, TM–TE, and TM–TM.
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