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SUMMARY
We present an analysis of thin microstrip superconducting structures in which the effects of the superconducting
material, of finite complex conductivity and finite thickness, are taken into account through the concept of
sheet impedance coupled with an extension of the Spectral Domain Immittance Approach. The effect of the
magnetic field on the penetration depth in the superconductor is included by solving the Ginzburg–Landau
equations within the thin-film approximation (t/l0 ¿ 1). The state of the material is determined self-consistently
in such a way that when the critical field is exceeded, the material systematically shifts from the supercon-
ducting to the normal state. Special attention is paid to the behaviour of the system in the neighbourhood of
the critical temperature,T/Tc . 1. We report that, in some cases, the propagation constant of a superconducting
microstrip line attains a maximum when the real and imaginary parts of the conductivity are approximately
equal. Numerical results for a microstrip line and a patch resonator are presented and compared with available
data to document the validity of the approach. 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The inductive properties of superconductors, in addition to their exceedingly small ohmic losses,
make superconducting thin films ideal for low-loss, low-dispersion transmission lines, interconnects
and microwave filters. Also, the recent discovery of high-temperature superconductors has reduced
the demands on bulky and costly cryogenics required to cool the system below already low
critical temperatures. Despite these advances, accurate computer models are not only desirable but
are rather necessary for any efficient investigation of the properties of superconducting devices
for microwave applications. Cost-effective and accurate design and analysis of superconducting
microwave devices rely on adequate modelling of the electrodynamic properties of the supercon-
ducting material.

The phase velocities and attenuation constants of very thin superconducting strips were analysed
by Pond and co-workers using a full-wave analysis consisting in a combination of the spectral-
domain approach and sheet resistance.1 In this approach, the Green impedance dyadics are modified

to include diagonal metallic terms which are equal to the sheet resistanceR =
1
st

. This method

was also applied to analyse a superconducting microstrip line using pulse functions.2 Similarly,
resonant frequencies and field patterns of microstrip antennas on anisotropic substrates were
determined using the same approach for both conventional and superconducting materials.3 Nghiem
et al. took into consideration the unequal distribution of the surface current density on the two
sides of the conductor to modify the surface (sheet) impedance in the modified Green impedance
dyadics.4 The traditional surface impedance was replaced by an effective surface impedance which
guarantees power conservation.
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In all these papers, the surface, or sheet impedance, is assumed independent of the field
distribution in the structure; it depends only on the thickness and conductivity of the supercon-
ducting strip. Consequently, only diagonal metallic matrix elements appear in the modified Green
impedance dyadics. The coupling of the LSE and LSM modes, however, lead to non-diagonal
metallic elements especially for thin conductors, when the electromagnetic field varies either
rapidly or very slowly in the direction orthogonal to the film.5 For thick films, both the surface
and the sheet impedances reduce to the usual surface impedance regardless of the field properties.

A quasi-TEM analysis which includes the effect of the magnetic field on the penetration depth
into the superconductor was presented in Reference 6 and applied to determine the properties of
a wide microstrip line on top of a thin substrate. The solution to the Ginzburg–Landau (GL)
equation was used to determine the critical fields6 and powers assuming that the magnetic field
is tangential to the superconductor. The complex conductivity was modified to account for the
effect of the magnetic field. A similar result was recently presented by Megahed and El-Ghazaly
where the non-linear effects in the superconductor are also included.7 The GL equations were
solved in the time domain using the finite-difference time-domain method (FD-TD) to handle the
non-linear equations. They reported that the superconducting state is first destroyed at the edges
of thin microstrip lines where the current exceeds the critical valueJc. This rather intuitive result
is expected to hold qualitatively but its quantitative value is limited since the validity of the GL
equations when the vector potential varies rapidly in space, as it does at the edges of a thin
microstrip, is questionable.8 Under those conditions, higher-order terms in the free energy expansion
become important and may not be ignored. The equations which would result are of a higher
order of non-linearity and too complicated to be of much practical value in engineering design.

In this paper, we also include the effect of the magnetic field and determine the penetration
depth when the superconducting strip is carrying a current density. The imaginary part of the
complex conductivity obtained from the two-fluid model of Gorter and Cazimir is modified to
include the effect of the magnetic field through the modification of the penetration depth following
the analysis of Douglas.9 Conservation of charge then requires the real part of the conductivity
to be changed, as will be discussed later.

It has been recently proposed by Ma and Wolff that the existence of scattering of super- as
well as normal electrons in the two-fluid model leads to modified London equations.10 They report
that the enhanced peaks in the real part of the complex conductivity of some high-temperature
superconductors,11 observed below the critical temperature, can be explained within their model.10

In this work, we limit the analysis to the local approximation where the scattering of superelectrons
is neglected.

This paper is organized as follows. In Section 2, the main points of the two-fluid model are
briefly reviewed. Section 3 investigates the effect of a tangential magnetic field on the penetration
depth and electric conductivity of a thin superconducting film. Section 4 shows typical numerical
results obtained from the present approach and compares them to previously published results.

2. THE TWO-FLUID MODEL

The two-fluid model, proposed by Gorter and Cazimir, separates the electrons in the superconductor
into two dynamically distinct groups: normal electrons, which undergo scattering from atoms and
impurities as well as one another, and superconducting electrons, which move under the action
of the electric field insensitive to any scattering mechanism. The normal component of the current
depends on the electric field in accordance with Ohm’s law, i.e.12

Jn = s1E (1)

where the conductivitys1 is assumed to be real. On the other hand, the superconducting part is
related to the electric field by the London equation

dJs

dt
=

E
m0l2

(2)

where l is the penetration depth. For a time-harmonic field, the first Maxwell equation then
becomes
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= × H = (s1 − js2) E + jveE (3)

where s2 =
1

vm0l
2. Hence, the superconductor is treated as a material with complex conductivity,

s = s1 − js2.
Within this model, the conductivity varies with temperature according to the expressions

s1 = sn ST
Tc

D4

(4a)

and

s2 =
1 − ST

Tc
D4

vm0l
2
0

(4b)

Note that the two-fluid model is local and applies to uniform systems where the density of
superelectrons is position-independent and unaffected by the magnetic field. The phenomenological
theory advanced by Ginzburg and Landau not only includes spatial dependence of the order
parameter but describes the effect of a magnetic field on the superconducting state as well. The
derivation of these equations is not presented here; the reader is referred to the numerous books
on the subject, e.g. References 13–15.

3. DEPENDENCE OF CONDUCTIVITY ON MAGNETIC FIELD

It is well-established that a strong enough magnetic field destroys superconductivity and causes a
phase transition to the normal state.13–15 The material-dependent threshold value of the magnetic
field at which such a transition takes place depends on the temperature, the geometry and
dimensions of the superconductor as well as its impurity concentration and the nature of the
applied field. The magnetic field in the superconductor acts as a pair-breaking mechanism leading
to an increase in the penetration depth with the strength of the magnetic field. In this paper, we
consider only the effect of a magnetic field which is parallel to the surface of the superconductor.
This approximation is, judging from the results presented in Reference 6, adequate.

A detailed investigation of the dependence of the penetration depth on the magnetic field was
presented by Douglas, who solved the Ginzburg–Landau equations when a tangential magnetic
field is applied to a thin film.9 When the thickness of the film is much smaller than the penetration
depth, the order parameter can be taken as a constant. Under these conditions, the penetration
depth l(T,H) is related to the order parameter in the Ginzburg–Landau theory by9

l(H,T)
l(0,T)

=
C(0,T)
C(H,T)

(5)

The determination ofl(H,T) is therefore reduced to solving the Ginzburg–Landau equations with
the appropriate boundary conditions.

We consider the case of a magnetic field parallel to the thin film as shown in Figure 1. The

Figure 1. Thin superconducting film,t/l ¿ 1, in a tangential magnetic field. The field is equal toH1 on one side andH2

on the other
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system of axes is chosen such that the magnetic field isH = Hzuz. In this analysis, we assume
that the magnetic field depends only ony. This assumption is reasonable for wide lines and
patches. The vector potential can then be written as

ax =
h2 − h1cosh [

ft

l(T,0)
]

fsinh [
ft

l(T,0)
]

cosh(fh) +
h1

f
sinh (fh) (6)

where h1 and h2 are the values of the magnetic field at the top and bottom surfaces of the film.
The Ginzburg–Landau equations, which govern both the order parameter and the applied

magnetic field, can be written as

­2ax

­h2
= f2ax (7)

­2f

­h2 = fk2(a2
x + f2 − 1) (8a)

­f

­h
= 0 (8b)

at the surface, where

f =
C(T,H)
C(T,0)

, a =
A

Î2 l(T,0)Hcb(T)
(8c)

h =
y

l(T,0)
, h =

H

Î2 Hcb(T)
(8d)

C is the order parameter,A the vector potential,l the penetration depth,k the Ginzburg–Landau
parameter andHcb(T) the bulk critical field. The boundary condition, equation (8b), corresponds
to vanishing current in the direction normal to the film at the dielectric–superconductor interface.
Using the assumption thatf is constant in equations (7) and (8a), using the boundary condition
(8b) and integrating both sides of equation (8a), we get

1 − f2 =
l(T,0)

t E t

l(T,0)

0

a2
ydh (9)

Combining equations (6) and (9) yields

1 − f2 =
l(T,0)

2tf3sinh2[ft/l(T,0)] F(h1 − h2)2 cosh2 S ft
2l(T,0) D FsinhS ft

l(T,0)D +
ft

l(T,0) G
+ (h1 + h2)2 sinh2 S ft

2l(T,0) D FsinhS ft
l(T,0) D −

ft
l(T,0) GG (10)

At a given temperature, equation (10) is solved for the quantityf. Figure 2 shows the dependence
of the left- and right-hand sides asf is varied from zero (normal state) to 1 (superconducting
state). The smaller solution is rejected on the ground that it approaches zero as the current in the
film vanishes.

In the structures under consideration, the thin films are carrying electric currents. From Maxwell’s
equations it follows that the term containing the differenceh2 − h1 = J dominates the right-hand-
side of equation (6). This approximation is even more accurate for thin films, i.e.t/l(T,0) ¿ 1.
Under these conditions, convenient expressions for the normalized order parameter can be obtained
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Figure 2. Solution of the Ginzburg–Landau equation. The smaller solution is rejected since it gives a normal state in zero
magnetic field

from a Taylor expansion of the hyperbolic functions in equation (10) in powers oft/l(T,0),
leading to

1 − f2 = Fl(T,0)
t G2 (h1 − h2)2

f4 (11)

If it is further assumed that the electric current in the film is not too large,uH1 − H2u ¿ Hcb(T), then

f2 = 1 −
1
2 Fl(T,0)

t G2 FH2 − H1

Hcb(T) G2

(12)

Once the order parameter is determined, a complex conductivity which takes into account charge
conservation may be written as

s1 = sn ST
Tc

D4

f2 + sn (1 − f2) (13a)

s2 =
1 − ST

Tc
D4

vm0l2 (0,0)
f2 (13b)

Similar expressions were given in References 6 and 7. If the penetration depth in zero magnetic
field, l(T,0), and the bulk critical magnetic field,Hcb(T), are assumed to depend on temperature
according to the experimental expressions

Hcb(T) = Hcb(0) F1 − ST
Tc

D2G (14a)
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l(T,0) =
l(0,0)

1 − ST

Tc
D4

(14b)

then equations (13) can be reduced further, when the applied magnetic field is weak, leading to

s1 = sn ST
Tc

D4

+ sn

Sl(0,0)
t D2 S I

Ic
D2

1 − ST
Tc

D2
(15a)

s2 =
1 − ST

Tc
D4

vm0l
2(0,0)

−
S I
Ic
D2

vm0t2 F1 − ST

Tc
D2G (15b)

Note that these equations reduce to those of the two-fluid model in the proper limits. The quantity
Ic is related to the bulk critical magnetic current bywHcb (T = 0) = Ic, where w is the width of
the strip andI is the current carried by the strip.

Once a conductivity is given, the effect of the thin superconductor on the propagation or
resonant properties of the structure enter our formulation through the concept of sheet impedance,
as discussed in Reference 16.

4. RESULTS

4.1. Microstrip

The approach described here is first applied to a single thin superconducting microstrip line
with a superconducting ground plane. The strip is 25mm wide, and the dielectric is 450Å thick
with er = 10·5. The penetration depth of the superconductor atT = 0 is taken to be 3200Å and its
normal conductivitysn = 106 S/m.

Figure 3 shows the normalized propagation constant as a function ofT/Tc at 1 GHz. We first
compare our results with those presented in Reference 1, where a strip line having its ground
plane width equal to its conductor width is simulated instead of the original structure. The solid
line in Figure 3 is obtained from the present approach, where the LSE and LSM sheet impedances
are not necessarily equal, while the dashed line corresponds to both LSE and LSM sheet
impedances equal toR= 1/st. The squares and the experimental results are from Reference 1.
Note that using different LSE and LSM sheet impedances brings the numerical results in better
agreement with the measured values. If the original structure, which includes a full ground plane,
instead of only one of widthw used in Reference 1, is analysed, lower values of the normalized
propagation constant are obtained (long-dashed line). This is expected since the current is no
longer confined to the cross-section of the strip line, thereby reducing the inductance and the
propagation constant. Taking into consideration the fact that measured values oflL have limited
accuracy, the experimental values of the propagation constant may be reproduced with a larger
value of the London penetration depth. This is shown in Figure 4, where it can be seen that an
increase inlL leads to an increase in the propagation constant. In other words, a better fit is
obtained with a larger value oflL within this model.

We also investigated the effect of changing the normal conductivitysn on the propagation
characteristics of the same structure. For large values ofsn, a peak appears in the propagation
constant just below the critical temperature as seen in Figure 5. This behaviour has been reported
by Swihart for the case of a strip line where the phase velocity shows a minimum as the
increasing temperature approachesTc.17 As the conductivity is further decreased, the peak in the
propagation constant becomes less pronounced and disappears atsn = 106 S/m for the present struc-
ture.
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Figure 3. Real part of the propagation constantg/k0 as a function ofT/Tc for a thin superconducting microstrip line at
1 GHz

The attenuation constant of the same structure is shown in Figure 6 as a function ofT/Tc at
1 GHz. The attenuation constant increases monotonically with temperature, more precipitously at
temperatures close toTc or to 0 as expected from the variation ofs1 = sn(T/Tc)4 with T/Tc. The
effect of the different LSE and LSM sheet impedances in our theory (solid line) is clearly visible.

The attenuation constant of a similar microstrip line, where the thickness of the substrate is
increased to 4·5mm, is shown in Figure 7. The solid line is from the present approach, where
both diagonal as well as off-diagonal metallic elements are included. Note that, for comparison
purposes, we also simulated the structure which has been used in Reference 1 instead of the
actual microstrip line. The results obtained usingRs = 1/st coincide, within plotting accuracy, with
those obtained from the present method.

Figure 8(a) shows the propagation constant as a function ofT/Tc of the microstrip line of
Figure 3 for different values ofI/I c at 1 GHz. It is interesting to note that the change in the
normalized propagation constant is relatively small as long as the line is in the superconducting
state. As expected, the system undergoes a phase transition at a temperatureTtr, which decreases
as the current in the line is increased. For this structure, the propagation constant in the normal
state is larger than in the superconducting structure. This is mainly due to the considerable ohmic
losses in the thin conductors. Indeed, when the resistance per unit length of a transmission line
is much larger than its inductance, and the dielectric losses are small, the complex propagation
constant is approximately given byg = (1 + j) √(RCv/2). This observation also lends support to
the approach presented here since it gives propagation and attenuation constants which are equal
to within less than 5% in the normal state, i.e.T . Tc.

The attenuation constant is, on the other hand, more sensitive to the transported current (power)
as shown in Figure 8(b). Even at temperatures which are low compared to the transition temperature
Ttr, the attenuation constant increases considerably faster than the propagation constant as the
current in the line is increased.

 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Model.,10, 217–229 (1997)
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Figure 4. Propagation constant as a function ofT/Tc of the microstrip in Figure 3 at 1 GHz for different values oflL

Figure 5. Propagation constant as a function ofT/Tc of the microstrip in Figure 3 at 1 GHz for different values ofsn
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Figure 6. Attenuation constant 1n[a/k0] as a function ofT/Tc of the microstrip in Figure 3 at 1 GHz

Figure 7. Attenuation constant of a microstrip line as a function ofT/Tc at 1 GHz andd = 4·5mm. The crosses are from
Reference 1. Note that the solid and dashed lines are identical to within the plotting accuracy

 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Model.,10, 217–229 (1997)
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Figure 8. Propagation characteristics of the superconducting microstrip line of Figure 3 as a function ofT/Tc at 1 GHz for
difference values ofI/I c: (a) propagation constant; (b) attenuation constant

Int. J. Numer. Model.,10, 217–229 (1997)  1997 by John Wiley & Sons, Ltd.



227spectral-domain modelling

4.2. Patch resonator

As a second example, our approach is applied to determine the resonant frequencies of a patch
resonator (Figure 9(b)). Figure 9(a) shows the resonant frequency as a function ofT/Tc for a
square superconducting patch. The rapid increase in the resonant frequency, as the temperature is
lowered belowTc, is related to the increase in the propagation constant or, equivalently, the
decrease in the phase velocity. The solid line corresponds to both diagonal and off-diagonal
metallic elements, while the dashed line is obtained from only diagonal elements all equal to the
conventional sheet resistance 1/st. The integrals appearing in the inner products were replaced by
discrete summations, wherean = (n + 0·5)p/a and bn = mp/L, L = 5 mm and 2a = 5 mm. For the
dimensions used, the difference between the two results is minor. This is due primarily to the

Figure 9. Resonant frequency (a) of a superconducting patch (b) as a function ofT/Tc. er = 24·5, d = 0·508 mm,
tand = 4 3 10−5, L = 7·8 mm,W = 0·5 mm, l0 = 0·68mm, sn = 2 × 104 S/m, t = l. The crosses are from Reference 18 for a

boxed resonator with enclosure dimensions, 10× 5 × 5·588 mm

 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Model.,10, 217–229 (1997)
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fact that larger values ofa (or b), for which the LSE and LSM modes have significantly different
sheet impedances, do not play a major role in describing a quantity which does not vary rapidly
in space. The crosses, from Reference 18, are those of a boxed resonator with an upper shield
of height h = 5·08 mm. The enclosure confines the electromagnetic field to the volume of the box,
thereby forcing more penetration in the superconductor. A higher inductance or resonant frequency
results, as the positions of the crosses show.

5. CONCLUSIONS

A new approach to analysing superconducting microstrip structures is presented. The sheet
impedance of a thin conductor is used to describe the response of the system to a current density.
The Ginzburg–Landau equations were used to account for the effect of the magnetic field on the
state of the superconductor. It is reported that the system undergoes a phase transition to the
normal state at a temperatureTtr which decreases as the current (power) transported is increased.
The approach was applied to single microstrip line and a patch resonator. Good agreement was
found with experimental results or previously published calculations.
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