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Abstract-We present and compare two integral-equation formulations of 

the TE eigenvalue problem of a ridged circular waveguide. In the E-for- 

mulation, an integral equation for the tangential electric field Eø. is derived 

and solved by the moment method using basis functions which include the 

edge conditions. The H-formulation relies on an integral equation for the 

axial magnetic field Hz, which is also solved by the moment method and 

basis functions with edge conditions. Spurious roots are encountered in the 

E-formulation whereas the H-Formulation is free from spurious roots but 

requires larger matrices. Results from both formulations are compared with 

previously published data and analytic results for limiting cases, excellent 

agreement is demonstrated. 

1. INTRODUCTION 

Ridge waveguides are an important component in modern microwave fil- 

ters, septum polarizers and matching networks. Dual-mode Iiltcrs using 

waveguide technology often rely on accurate design and analysis of ridged 
sections of circular waveguides. 

A host of numerical techniques have bcen employed in the analysis of 

these structures in the recent years. The cutoff wavelcngths of the first two 

modes of a septum polarizer were determined by Behe and Brachat by the 

Finite Element Method (FEM) [1]. The Mode-Matching Technique (MMT) 
was used by Balaji and Vahldieck to investigate the eigenmode problem of 

single and multiple symmetric ridge waveguides [2]. The Method of Lines 

(MoL) was also applied to the eigenmode problem of a partially loaded 
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ridge waveguide [3]. Ridged structures with 2 symmetry planes in both 

rectangular and circular waveguides were treated by the Magnetic-Field- 

Integral-Equation (MFIE), which was solved using pulses as basis functions, 

by Sun and Balanis [4]. 
In this paper, we propose to modify the Mode-Matching Technique 

(MMT) to allow the inclusion of the edge conditions and eliminate the phe- 
nomenon of relative convergence. Instead of relying on the modes of the 

subregions of the structure, which is the standard practice in MMT, we 

perform a change of basis functions at the interfaces and introduce an addi- 
tional degree of freedom in order to always satisfy the boundary conditions 

of either the electric field or the magnetic field. An integral equation, or a 
set of coupled integral equations, are then derived for this additional degree 
of freedom and solved by the moment method. 

Attention will be focused only on the Transverse Electric rnodes since 

they provide a fertile testing ground for the two integral formulations. In the 

first formulation, the E-formulation, we derive an integral equation for thc 

quantity Eo at the interface whereas the H-forrnulation requires two coupled 

integral equations for the axial magnetic field Hz at the same interface. Due 
the different asymptotic behavior of these two quantities at the edges of the 

metallic ridge, a sizable disparity in the numerical performance of the two 

methods is observed. The E-formulation requires smaller matrices than the 
H-formulation but suffers from the phenornenon of spurious roots which are 

eliminated when enough basis functions are used. 

The paper is organized as follows. Section 2 presents a derivation of' the 

integral equation of Eo along with a set of basis functions which include 

the edge conditions. Section 3 discusses the H-formulation and the corre- 

sponding basis functions. Section 4 presents typical numerical results. 

2.A THE E-FORMULATION 

The structure under consideration is shown in figure 1. We assume that all 

metallic surfaces are perfectly conducting. The ridge of thickness 2 0 , and 

depth a - b has its upper surface at 0 = 0. We focus our attention first, on 

the TE modes with electric-wall symmetry. 
The axial component of the magnetic field, from which the transverse 

components of the electromagnetic fields of a TE mode are obtained, is ex- 

panded in modal series in each of the two regions. The boundary conditions 

at the metallic surfaces of region II are included in these expansions while 
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Figure 1. Cross section of ridge circular waveguide and its subdivision for 

modal expansions. 

no specific conditions are imposed at the interface I-II. 

and 

where l = 7r-O * 

At cutoff, the only non-vanishing components of the electromagnetic field 

of a TE mode, which are tangential to the interface I-II, are ilz and EO. 
It is, therefore, sufficient to enforce the boundary conditions of these com- 

ponents which are written as 
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and 

Instead of following the Mode-Matching Technique (MMT), in which the 

modal expansions in (1) and (2) are directly substituted in the boundary 
conditions (3), we introduce an additional degree of freedom in the problem 
and assume that the true tangential electric field Eel> at the interface is given 

by an unknown function X (4)) which vanishes over the metallic part of the 

interface I-II 

and rewrite equation (3.b) in the simple yet revealing form 

It is straightforward to verify that, as long as the function X (Ø) satisfies 

condition (4), the boundary conditions of Ep are allays satisfied. In addi- 

tion, whatever information we have on the behavior of at the interface, 
such as the edge conditions, can be included, through the basis functions, 
in the function 

From equation (5), the modal expansion coefficients in (1) and (2) can be 

expressed in terms of the function 

and 

If these expressions of the modal expansion coefficients are used in the con- 

tinuity condition of equation (3.c), we obtain the following integral 

equation for 



1061 

which holds only when 0 E [0, 27r - 0] . The transformations of the function 

X(O) XIC(n) and are defined in equations (6). 
To solve this integral equation, we expand the function X(O) in a series 

of basis functions which satisfy condition (4) along with the edge conditions. 

Let Bi denote a generic element of such a set and write X (Ø) as follows 

To determine the expansion coefficients ci 's, we apply Galerkin's 

method to the integral equation (7) with the expansion (8) [5]. A set of 

linear and homogeneous equations in the coefficients ci results 

where the entries of the matrix [K] are given by 

The cutoff wavenumbers are determined as the roots of' the determinant of' 

the square and syrnmetric matrix [K]. To avoid the poles in the deter- 

minant, the zeros of the smallest singular value of this matrix are located 

instead [6]. 

2.B BASIS FUNCTIONS FOR E-FORMULATION 

The basis functions used to expand Eo at the interface should capture the 

salient features of this quantity to guarantee numerical efriciency. Since EO 
is normal to the axis of the 900 metallic wedge, it becomes singular as 

r / as the radial distance to the axis of the wedge r approaches zero [7]. 

Taking into account the fact that there are two wedges located at 0 = 0 

and 0 = 0, a set of basis functions which satisfy these requirernents is 

given by . - 
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The spectra of these basis functions in each of the two regions can be 

expressed in terms of Bessel function of the first kind of order 1/6 [8] 

Note that the modes of the two subregions are all inchuded in the theory 
and rather in a simple way; they appear only in computing the inner prod- 
ucts in the quantities [E]ij. The phenomenon of relative convergence is 

eliminated by testing these sums for convergence, thereby leaving only one 

free parameter in the numerical solution, i.e., the number of basis functions 

M . The spectra of the basis functions of the TE modes with rnagnetic-wall 

symmetry can also be expressed in terms of Bessel functions of order 1/6; 

they are given in Appendix A. 

A possible disadvantage of the E-formulation is the fact that a quantity, 
which is obtained from IIz by differentiation, is expanded instead of II, 
itself. It is, therefore, not surprising that Eo is infinite at the edgcs of the 

ridge whereas Hz is finite everywhere [7]. Also, Hz is not necessarily zero 

at the metallic edges since a constant is also a possible asymptotic solution 

at a 90 ° 
wedge. Such a constant is eliminated from the theory when the 

derivative of Hz is taken to obtain Eo. It will be seen that, indeed, this 

formulation exhibits spurious roots which have not been encountered in the 

H-formulation. 

3.A THE H-FORMULATION 

In this formulation, we derive an integral equation for the axial magnetic 
field Hz at the interface I-II. 

The starting point is again the modal cxpansions given by equations (1) 
and (2). The boundary conditions are those in equations (3). The major 
difference resides in the fact that the axial magnetic field is non-zero over 

the entire range < 27r ; basis functions which cover this range are 
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needed. To accommodate the edge conditions, this interval is split into two 

parts: a) the gap of the interface B < ? < 2Jr - 0 and b) the metallic surface 

of the ridge -0 < 8 . Let and denote the true distributions 

of Hz in the first and second intervals, respectively, such that 

and 

Equations (13) can be combined with equations (1) and (2) to eliminate the 

modal expansion coefficients leading to 

and 

Two coupled integral equations for the functions and can be 

derived by using equations (14) in the boundary conditions of Eo as given 
in equations (3.a) and (3.b): 

which holds when 4> E [0, 01 , and 

which holds when 0 E [-8, 0] . 
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To solve these coupled integral equations, we expand the functions 

and in series of basis functions. Let Pi (4)) and Qi (ø) designate 
elements of sets of basis functions for and Z($) , respectively, such 

that 

and 

For simplicity of implementation, we take the same number of basis func- 

tions in both regions. When equation (15) is projected over the basis func- 

tions Pj(Ø) and equation (16) over we get two sets of linear and 

homogeneous equations in the coefficients ci and di, namely 

The entries of the matrices in equations (18) are given by 

and 

The cutoff wavenumbers are again determined as the roots of the deterrni- 

nant of the extended matrix whose subrnatrices are given by (19). 

3.B BASIS FUNCTIONS FOR H-FORMULATION 

The basis functions used to expand Hz in each of the two intervals of the 

interface I-II should contain the edge conditions to accelerate numerical 



1065 

convergence. Since Hz is parallel to the axis of the 90 ° metallic wedge, it 

becomes non-analytic as r/ as the radial distance to the axis of the wedge 
r approaches zero [7]. However, the function which approaches a 

constant as r 0, is also an asymptotic solution for the TE modes of a 

metallic wedge of non-zero internal angle [7]. This function dominates the 

axial magnetic field in the vicinity of the edges of the ridge. Taking this 

important point into consideration, we use the following basis functions 

and 

These basis functions emphasize the contribution of the constant asymptotic 
solution. Their spectra are given by the expressions 

and 

Other basis functions which behave as r/ in the vicinity of the ridges were 

also tried and failed to predict the correct cutoff wavenumbcrs. 

Note that the modes of the two subregions are again all included in the 

theory and rather in a simple way; they appear only in computing the inner 

products in the entries of the submatrices of (19). The phenomenon of 

relative convergence is eliminated by testing these sums for convergence 

thereby leaving only one free parameter in the numerical solution, i.e., the 

number of basis functions M . 

The spectra of the basis functions of the TE modes with magnetic-wall 

symmetry are given in Appendix B. 

4. NUMERICAL RESULTS AND DISCUSSION 

The cutoff wavenumbers of the first few TE modes of the ridge circular 

waveguide shown in figure 1 were determined using both formulations. 
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Figure 2. Cutoff wavenumbers of the TE modes as a function of h/a with 

0 = 2.292° from E-formulation (solid line) and H-formulation (dashed line). 
The circles are from reference [1]. 

The first structure we investigated is a narrow ridge, 0 = 2.292° . Figure 
2 shows the cutoff wavenumbers of the first 3 TE modes with electric wall 

symmetry as a function of the depth of the ridge. The E-formulation con- 

verges with 4 basis functions whereas up to 6 basis functions are necessary 
for the H-formulation to converge. The circles show the excellent agreement 
between the results of this work and the finite element calculation presented 
in [1]. An additional test of our numerical results is provided by the cutoff 
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wavenumbers of the sectoral waveguide which are given by the equation 

for the TE modes with an electric wall symmetry. For the TE modes with 

magnetic wall symmetry, the cutoff wavenumbers are given by the same 

equation but with 1 112 Results from both formulations converge in 

the limit h to those given by equation (22). It is also interesting to 

note that the cutoff wavenumber of the TEoi mode (kca = 3.832) is the 

same for both the empty and the sectoral waveguide. This is also reproduced 

by both formulations. 

In computing the sums in equations (10) for the E-formulation, we found 

that 30 terms were sufficient to guarantee convergence. On the other hand, 
the sums in equations (19) in the H-formulation require more than 100 terms 

to obtain numerically stable results. The reason resides in the fact that the 

spectrum of the basis functions have a long tail because of the small 

width of the ridge. It is, however, important to note that more terms arc 

needed when a larger number of basis functions are used. This is the case 

when the cutoff frequencies of higher order modes are required such as in 

computing generalized scattering matrices of an empty to ridged waveguide 
transition. 

The second structure is a wider ridge, 0 = 11° , for which both formu- 

lations converge with 4 basis functions but the sums in equations (19) still 

require approximately 80 terms to converge whereas thosc in equation (10) 

converge with 30 terms. If a much wider ridge is assumed, 0 = 45° for ex- 

ample, the sums in the H-formulation converge with only 30 terms. Figure 
3 shows the cutoff wavenumbers of the first 3 TE modes with an electric 

wall symmetry and the first 2 TE modes with a magnetic wall symmetry as 

a function of the ridge depth h/a . Both formulations converge to the same 

results and reproduce the cutoff wavenumbers of the empty and sectoral 

waveguides. 
From the present numerical results, and taking into account the fact that 

the E-formulation suffers from spurious roots which are, ncverthelcss, elimi- 

nated when enough basis functions are used, the I-I-formulation is efficient in 

analyzing wide ridges, whereas the E-formulation should be adopted for nar- 

row ridges. A combination of both formulations may also be advantageous 
for narrow ridges where the results of the H-formulation, which docs not give 

spurious roots, are used as starting guesses for the E-formulation. The II- 

formulation requires roughly twice as much CPU time as the E-formulation. 
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Figure 3. Cutoff wavenumbers of the TE modes as a function of hla with 
= 11° from E-formulation (solid line) and II-formulation (dashed line). 

5. CONCLUSIONS 

A comparative study of two integral-equation formulations of the TE cut- 

off wavenumbers in a ridge circular waveguide was presented. The E-for- 

mulation consists in deriving and solving an integral equation for EO and 

was found to suffer from spurious roots which are eliminated when enough 
basis functions are used. On the other hand, the I-I-formulation in which an 

integral equation for the axial magnetic field Hx is solved requires larger 
matrices but does not exhibit any spurious roots. The H-formulation is 

effective in analyzing wide ridges ( 0 2:: 10° ) whereas the E-formulation is 
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appropriate for narrow ridges. A combination of both formulations allows 

an efficient analysis of ridges of arbitrary width. 

APPENDIX A 

In this appendix we give the essential formulas for the TE modes with mag- 
netic wall symmetry within the E-formulation. 

The entries of the matrix which corresponds to equation (10) are given 

by the following equation 

The basis functions for these modes are given by 

The spectra of these basis functions are defined and given by 

and 

APPENDIX B 

In this appendix we summarize the formulae for thc TE modes with mag- 
netic-wall symmetry within the H-formulation. 
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The entries of the matrices corresponding to equations (19) are given by 

and 

The following basis functions where used 

and 

The spectra of these basis functions are given by 

and 
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