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A Pole-Free Modal Field-Matching Technique
for Eigenvalue Problems in Electromagnetics
Smain Amari and Jens Bornemann Fig. 1. Cross section of a ridged circular waveguide.
Abstract—A pole-free formulation of the modal field-matching tech- A direct way in a\/oiding the poies consists of maintaining the

nique (MFMT) as applied to eigenvalue problems in electromagnetics ,ing| equations as obtained from the boundary conditions. The
is presented in this paper. The poles in the determinantal equation

are systematically eliminated without requiring previous knowledge of |arge size of the resulting matrix requires large central processing

their locations or nature, resulting in well-behaved determinants. The unit (CPU) times especially when large numbers of modes are needed.
minimum singular value in a singular-value decomposition of the pole- When equal numbers of modes are retained in the modal expansions,
g;idn;fﬁr'asﬁi]b'ﬁ emuglt‘a_i’i’édeel[o‘rjr'rﬁ’jl;ii‘gg i‘é"gat :ise g?;ag‘;grm‘i’r?“e ii‘lg it is possible to eliminate the poles from the determinantal equation.

cutoff Wavenumbers 0? a ridged waveguide topgemonstrate its validity However, the res_ulting determinarit is practi(_:ally a rectangular func-

and efficiency. tion, thereby adding to the CPU times required to accurately locate
its zeros [5].

A technique to circumvent these poles was presented by Labay and
Bornemann where the singular-value decomposition of the matrix
[A(k)] is used instead of its determinant [6]. In this approach,
I. INTRODUCTION nontrivial solutions to (1) are determined from the zeros of the

A large number of problems in engineering, physics, and appli§ghallest singular value in the singular-value decomposition of the

mathematics are reduced to solving a homogeneous matrix equaffrix [4(%)] [6]- _ o _
of the form It is important to note that this approach, despite its success in

reformulating the problem through a pole-free quantity, does not
[A(R)][z] =0 (1) eliminate the poles from the matrik4(k)]. In fact, the poles in
where [A(k)] is a parameter-dependent square complex matrix the determinant are refle_c_ted in the singular-value apprqach through
ordern x n and z is an unknownn-element column vector [1], he sharpness of the minima. The sharpness of a minimum in the
[2]. Nontrivial solutions to (1) exist only when the matr[xi] is smallest smgl_JIar valug increases as its location approaches a pole
singular, i.e., when its determinant vanishes for certain values of ikthe determinant. This will be shown by the numerical results of

parameterk: this paper. _ o _ _ o
Here we reexamine the origin of the poles in the determinant within

det[A(k)] =0, k= ko. (2)  the MFMT and show how they can be systematically eliminated

The numerical solution of (2) is often hindered by the presence §PM the matrix[A(k)] without requiring prior knowledge of their
poles in the determinant in the vicinity of its zeros, thereby leading i8cat|0ns. Thesg poles result f_rom the inversion of sm_gu_lar matrices
a time-consuming search and nonphysical roots. This situation is offgrf€ construction of the matriki(k)]. By carefully avoiding such
encountered in the application of the modal field-matching technig@Berations, we show how well-behaved determinants can be obtained.

(MFMT) to determining cutoff frequencies and propagation constan-i—:gIe resulting Qetermlnant is inherently pole-f_ree and the minima of
of microwave and millimeter-wave structures. the smallest singular value are broader than in the standard MFMT.

A few attempts have been made to eliminate poles from specific
applications in the recent years. In [3], a pole-zero combination was ||
used in the determination of spectrum of unilateral finline. In [4], We focus attention on the structure shown in Fia. 1. The ridae
a pole-free function was constructed once the locations of the polefs - . - 9. . 9
were determined. In both approaches, the accurate determinatior? Oi;hlckneSSZH and depthr = — b and the metallic walls of the

the pole locations is required in a first step in order to reliably dete‘Nf"Wegulde are assumed lossless. Here, we present only the analysis of

the zeros in the second step. t%e transverse-electric (TE) modes as these are sufficient to illustrate

the approach.
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The authors are with the Laboratory for Lightwave Electronics, Microwaves
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Fig. 2. Determinant of A(k.)] as a function ofk.a whenh/a = 0.5,0 = 2.29°, and M = N = 3 from the standard MFMT (solid line) and
the pole-free MFMT (dashed line).

Following the analysis presented in [7], we expand the axial In order to remove the poles from the formulation, we first
magnetic field in each of the two regions. From the boundahave to identify the terms causing the singularities. From (4), it
conditions at the interface I-ll, we get two sets of homogeneoiss evident that only the divisions by the term#g,_,(k.b) and
equations in the expansion coefficients in the two regions Ji(kb)Y! (kea) — Yi(k.b)J[(k.a) can cause the singularities in the

) determinant as the coupling integrals are finite. In addition, the Bessel

[4] =[C1[B] functions in the numerators in (4) are evaluated away from the origin

[B] = [D][A]. (3) ask. =0 is not a possible solution, and are consequently all finite.
We, therefore, proceed to eliminate these divisions from the final

The square matricels”] and[D] are given by determinantal equation giving the cutoff wavenumbers.

[l = J[ (kb)Y (keca) — Y{ (ko) J{ (kea) We start from the boundary conditions &% which lead to
M Jr—1(ked)
1 . Jica(keb) A,
270 osl(n — 1)) cos[(m — 1)7r7T — 9] M
X do- - . — "I Tl a) — YV (ke "1,
= Y ey e = 3= Bl ) = Vi b))
(4a) N h— 0
: cos[(m — 1)7@ ]
and x /2776 dpcosln Z Dol Y
4 : = .
(D)o = T (keb) ' V) Vm = be)
Tk (ko) — Yi(kob) J] (ko) (6a)
h— 0
/.QT—H cos[(n — 1)d)] cos[(m — 1)7ri — (7’] The continuity of the magnetic field leads to a similar equation:
0 Va(Ll+6u) /(= 0)(1+ 8m1) a (B (ko) — Ya(ke) TL (Fet)] Bon
M 2 —f Tl .
e — (e , =3 i (keb) A, X ag <3l = Dol
ere,] = mn/(m — ¢) and J; andY; are Bessel and Neumann - p (L4 6n1)
functions of order, respectively. Equation (3) can be used to elim- =t b—p
inate one set of coefficients leading to the following determinantal cos[(m — 1)mw- (7’]
equation: Vo —:6_ - (6b)
™= ml
det{[D)[C] ~ [U]} = 0. (5)

For convenience, we define the following four diagonal matrices:
Here, [U] is the N x N unit matrix. The cutoff wavenumbers are
given by the roots of (5). [T)imn = mn Jn—1(keb) (7a)
The solid line in Fig. 2 is a plot of the determinant in (5) as a [T Ton = S Js 1 (Reb) (7b)
function of k.« whenb/a = 0.5 and N = 3. The presence of the C o e e ,
poles is evident. Most importantly, the determinant changes sign in Y Jmn = 0ma[Ji(keb)Yr (kea) = Yi(keb) J l(kea)] (7c)
the vicinity of a pole, thereby leading to nonphysical solutions. YT n = brnn [T (Eb)Y] (kea) = V) (kob)J} (kea)]. (7d)
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Fig. 3. Minimum singular value dfA(k.a)] as a function ok.a whenh/a=0.9,0=2.29°, andM = N =6. (a) Standard MFMT and (b) pole-free MFMT.

We also introduce the matrii)] defined by Note that up to this point we have carefully avoided any divisions.

 cos[(n —1)¢] cos[(m — l)er -

27 —0 ]
[L]nm, = / do m—9
[

®)

Equation (9) can be combined to obtain a homogeneous matrix
equation in one set of the expansion coefficidot or [B]. Using
[B] from (9b) in (9a), we get

i \/7T(1+6n1) \/('/T_B)(l'i'érnl) '

It is straightforward to verify that (6) can be rewritten in the following [T)[A] = (LI N[YT (L] [][A] = o. (10)
matrix form: , , This equation is not convenient as it contains the inverg® pfvhich
[J'][A] = [L][Y][B] (92)  has poles. To eliminate this pathology, we first multiply (10) from
and the left by [L]* to obtain
[Y1(B] = (L] [J][A]. (9b) (L] ][A] - VY] ) [T][A] = o. (11)
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Fig. 4. Cutoff wavenumber of a ridged circular waveguide as a functioh/af when6 = 2.29°. The circles are from [9].

Since the matrice®”'] and[Y]~* are diagonal, thegommutetheir insets of Fig. 3(a)] when the standard MFMT is used. The sharper

order in (11) can be reversed. We, therefore, multiply (11) from theinimum atk. = 6.55 was not located even with this small step

left by [Y], after the previous reversal of order, to get width. It then becomes obvious that the pole-free formulation leads
. to a considerable reduction in CPU times.

(V)L ) = [Y')L) [J]HA] = [K][A] = 0. (12) In addition, the smoothness of the determinant within the new
ole-free version allows the use of rapidly converging root-finding
?gorithms. In cases where large matrices are used, and to avoid

overflows in the determinant, it may be advantageous to use only
its sign in conjunction with the bisection method. The sign of the
determinant can always be computed, even if the determinant itself
It is now evident that (13) contains only terms which &iréte and causes an overflow or underflow, by proper scaling of the entries of
cannot exhibit any poles. The dashed line of Fig. 2 shows a typidge matrix.

plot of the determinant given by (13) as a function/of: for the For comparison, Fig. 4 shows results for the cutoff wavenumbers
same dimensions as those of the solid line of the same figure. N8fe Obtained from the present technique. The circles are from [8].
that the physical zeros of the two determinants coincide. It is aldé'¢ agreement of the two calculations is excellent. Furthermore, the
worth emphasizing the fact that the matrix multiplications appearirf/toff wavenumbers of the modes with an electric-wall symmetry

in (13) involve diagonal matrices and can be written explicitly as OPtained from this paper agree with those of the sectoral and empty
waveguides in the proper limité,/a — 0 andh/a — 1 [9].

The cutoff wavenumbers of the modes under consideration a
therefore, given by the following determinantal equation:

det{[K]} = det{[Y][L] '[7'] - W ULI"[7]} =0.  (13)

[I{]nﬂ/n = [Y]rn,?n [L];-Lln [J/]nn - [}7/]777,777,[[/]77.177, [J]nn (14) n. ¢
. ONCLUSIONS

In the case where unequal numbers of modes are used, the singulapn efficient technique to eliminate poles from the MFMT as ap-
value decomposition is used in both computing the inverse of tidied to eigenvalue problems in electromagnetics was presented. The
matrix [L] as well as the minimum singular value of the mafi&]. poles are caused by inversion of singular matrices in the construction

As mentioned earlier, the use of the minimum singular value ®f the determinantal equation. By avoiding such inversions, a pole-
locate the cutoff wavenumbers instead of the determinant circumvefige and well-behaved determinantal equation results. The minima of
the problem of the poles. The presence of the poles in the matrix #3¢ smallest singular value are much wider that those obtained from
however, reflected in the sharpness of the minima of the smalldd§ standard MEMT, thereby resulting in a substantial reduction in
singular value. Fig. 3(a) shows the smallest singular value obtain%g>U times required to locate the zeros.
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compute theS-parameters for three-layer step discontinuities. More
recently, the finite-difference frequency-domain method has been
employed in [15] for the analysis of CPW short circuits.

An Application of FDTD in Studying the End Effects All of the above-mentioned literature has dealt with isotropic
of Slotline and Coplanar Waveguide substrates—and the available results for anisotropic substrates are

with Anisotropic Substrates relatively few. In this paper, we analyze the slotline and CPW

discontinuities on anisotropic substrates by using the full-wave finite-

Jaideva C. Goswami and Raj Mittra difference time-domain (FDTD) method, which enables us to obtain

the characteristics of the discontinuities over a wide range of fre-

b hi he finite-diff ime-d ) guencies with a single run.
Abstract—In this paper, the finite-difference time-domain (FDTD) In the conventional approach of analyzing the discontinuities
method is applied in conjunction with the generalized pencil of function

(GPOF) technique to evaluate the reflection coefficient from shorted Problems, an FDTD code is run twice, first for a continuous line and
slotlines and coplanar waveguides (CPW) on anisotropic substrates, and then in the presence of the discontinuity, to derive the time-domain
to extract the propagation constant along the line from these data. For fields for both the incident and reflected waves. In this paper, we
each frequency, the field solutions at different locations are processed combine the generalized pencil of function (GPOF) method with the
by using the GPOF technique to exract two complex exponents that e method to compute the reflection coefficient in a single run
correspond to the forward and backward traveling waves, which provide Fi btain the field soluti he desired f band )
all the information about the reflection coefficient and the dispersion 'St We obtain the field solutions over the desired frequency band at
characteristic of the transmission line. The advantage of combining & number of equally spaced points located along the transmission line,
the GPOF technique with the FDTD method is that the reflection and subsequently use the GPOF to extract two complex exponents
coefficients can be obtained with a single run. Recognizing that there for each frequency, which adequately represent the computed fields,
is a dearth of results for the reflection coefficients of slotline and CPW- 54 to extract the forward and backward traveling waves from these
line discontinuities with anisotropic substrates, the present problem is also field data. The knowled f the incident and reflected fields. in turn
solved by using the spectral-domain method for the purpose of validation, _e ata. . e _0 edge o .e. ciae a. eflectec nelds, u, !
and the two results are found to compare quite well with each other. Yi€lds the dispersion characteristics of the line as well as the reflection
For further validation, the FDTD and GPOF solutions are derived for  coefficient due to the discontinuity.
isotropic substrates, and are compared with the published theoretical  We use the cubic spline for the purpose of exciting the transmission
and experimental results. line in the FDTD calculations. The time-frequency window product
Index Terms—CPW, FDTD method, GPOF method, SDA, slotline, of the cubic spline is very close to 0.5—the lowest possible value
transmission-line discontinuities. that corresponds to Gaussian-type pulses—and the cubic spline has
low-pass filter characteristics similar to the Gaussian. Consequently,
for all practical purposes, the cubic spline is similar to the Gaussian
) T ) _and has the additional advantage of being compact in support, which
One of the most challenging difficulties encountered in the desigi tyrn, avoids the need for truncation.
of microwave and millimeter-wave integrated circuits is to accu- Thjs paper is organized as follows. In the Section I, we discuss
rately characterize various kinds of transmission-line discontinuitigfe FDTD solutions and their processing using the GPOF technique.
Although the literature is replete with theoretical and experimentg}, yalidate the FDTD/GPOF results. we also solve the present
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