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A Pole-Free Modal Field-Matching Technique
for Eigenvalue Problems in Electromagnetics

Smain Amari and Jens Bornemann

Abstract—A pole-free formulation of the modal field-matching tech-
nique (MFMT) as applied to eigenvalue problems in electromagnetics
is presented in this paper. The poles in the determinantal equation
are systematically eliminated, without requiring previous knowledge of
their locations or nature, resulting in well-behaved determinants. The
minimum singular value in a singular-value decomposition of the pole-
free matrix exhibits much wider dips than what is obtained from the
standard MFMT. The pole-free formulation is applied to determine the
cutoff wavenumbers of a ridged waveguide to demonstrate its validity
and efficiency.

Index Terms— Eigenvalues/eigenfunctions, mode-matching methods,
ridge waveguides.

I. INTRODUCTION

A large number of problems in engineering, physics, and applied
mathematics are reduced to solving a homogeneous matrix equation
of the form

[A(k)][x] = 0 (1)

where [A(k)] is a parameter-dependent square complex matrix of
order n � n and x is an unknownn-element column vector [1],
[2]. Nontrivial solutions to (1) exist only when the matrix[A] is
singular, i.e., when its determinant vanishes for certain values of the
parameterk:

det[A(k)] = 0; k = k0: (2)

The numerical solution of (2) is often hindered by the presence of
poles in the determinant in the vicinity of its zeros, thereby leading to
a time-consuming search and nonphysical roots. This situation is often
encountered in the application of the modal field-matching technique
(MFMT) to determining cutoff frequencies and propagation constants
of microwave and millimeter-wave structures.

A few attempts have been made to eliminate poles from specific
applications in the recent years. In [3], a pole–zero combination was
used in the determination of spectrum of unilateral finline. In [4],
a pole-free function was constructed once the locations of the poles
were determined. In both approaches, the accurate determination of
the pole locations is required in a first step in order to reliably detect
the zeros in the second step.
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Fig. 1. Cross section of a ridged circular waveguide.

A direct way in avoiding the poles consists of maintaining the
original equations as obtained from the boundary conditions. The
large size of the resulting matrix requires large central processing
unit (CPU) times especially when large numbers of modes are needed.
When equal numbers of modes are retained in the modal expansions,
it is possible to eliminate the poles from the determinantal equation.
However, the resulting determinant is practically a rectangular func-
tion, thereby adding to the CPU times required to accurately locate
its zeros [5].

A technique to circumvent these poles was presented by Labay and
Bornemann where the singular-value decomposition of the matrix
[A(k)] is used instead of its determinant [6]. In this approach,
nontrivial solutions to (1) are determined from the zeros of the
smallest singular value in the singular-value decomposition of the
matrix [A(k)] [6].

It is important to note that this approach, despite its success in
reformulating the problem through a pole-free quantity, does not
eliminate the poles from the matrix[A(k)]. In fact, the poles in
the determinant are reflected in the singular-value approach through
the sharpness of the minima. The sharpness of a minimum in the
smallest singular value increases as its location approaches a pole
of the determinant. This will be shown by the numerical results of
this paper.

Here we reexamine the origin of the poles in the determinant within
the MFMT and show how they can be systematically eliminated
from the matrix [A(k)] without requiring prior knowledge of their
locations. These poles result from the inversion of singular matrices
in the construction of the matrix[A(k)]. By carefully avoiding such
operations, we show how well-behaved determinants can be obtained.
The resulting determinant is inherently pole-free and the minima of
the smallest singular value are broader than in the standard MFMT.

II. A POLE-FREE MODAL FIELD-MATCHING TECHNIQUE

We focus attention on the structure shown in Fig. 1. The ridge
of thickness2� and depthh = a � b and the metallic walls of the
waveguide are assumed lossless. Here, we present only the analysis of
the transverse-electric (TE) modes as these are sufficient to illustrate
the approach.

The TE modes can be divided into two sets with either an electric or
a magnetic wall along its plane of symmetry. The case of the electric-
wall symmetry is treated in details, although numerical results for the
cutoff wavenumbers will be given for both symmetries.
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Fig. 2. Determinant of[A(kc)] as a function ofkca when h=a = 0:5; � = 2:29�, and M = N = 3 from the standard MFMT (solid line) and
the pole-free MFMT (dashed line).

Following the analysis presented in [7], we expand the axial
magnetic field in each of the two regions. From the boundary
conditions at the interface I–II, we get two sets of homogeneous
equations in the expansion coefficients in the two regions

[A] = [C][B]

[B] = [D][A]: (3)

The square matrices[C] and [D] are given by
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and
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(4b)

Here, l = m�=(� � �) and Jl and Yl are Bessel and Neumann
functions of orderl, respectively. Equation (3) can be used to elim-
inate one set of coefficients leading to the following determinantal
equation:

detf[D][C]� [U ]g = 0: (5)

Here, [U ] is theN � N unit matrix. The cutoff wavenumbers are
given by the roots of (5).

The solid line in Fig. 2 is a plot of the determinant in (5) as a
function of kca when b=a = 0:5 andN = 3. The presence of the
poles is evident. Most importantly, the determinant changes sign in
the vicinity of a pole, thereby leading to nonphysical solutions.

In order to remove the poles from the formulation, we first
have to identify the terms causing the singularities. From (4), it
is evident that only the divisions by the termsJ 0n�1(kcb) and
Jl(kcb)Y

0

l (kca)� Yl(kcb)J
0

l (kca) can cause the singularities in the
determinant as the coupling integrals are finite. In addition, the Bessel
functions in the numerators in (4) are evaluated away from the origin
askc = 0 is not a possible solution, and are consequently all finite.
We, therefore, proceed to eliminate these divisions from the final
determinantal equation giving the cutoff wavenumbers.

We start from the boundary conditions ofE� which lead to
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(6a)

The continuity of the magnetic field leads to a similar equation:

[Jl(kcb)Y
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For convenience, we define the following four diagonal matrices:

[J ]mn = �mnJn�1(kcb) (7a)

[J 0]mn = �mnJ
0

n�1(kcb) (7b)
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Fig. 3. Minimum singular value of[A(kca)] as a function ofkca whenh=a=0:9; �=2:29�, andM=N=6. (a) Standard MFMT and (b) pole-free MFMT.

We also introduce the matrix[L] defined by

[L]nm =
2���

�

d�
cos[(n� 1)�]

�(1 + �n1)

cos[(m� 1)�
�� �

� � �
]

(� � �)(1 + �m1)
: (8)

It is straightforward to verify that (6) can be rewritten in the following
matrix form:

[J 0][A] = [L][Y 0][B] (9a)

and

[Y ][B] = [L]T [J ][A]: (9b)

Note that up to this point we have carefully avoided any divisions.
Equation (9) can be combined to obtain a homogeneous matrix
equation in one set of the expansion coefficients[A] or [B]. Using
[B] from (9b) in (9a), we get

[J 0][A] � [L][Y 0][Y ]�1[L]T [J ][A] = 0: (10)

This equation is not convenient as it contains the inverse of[Y ] which
has poles. To eliminate this pathology, we first multiply (10) from
the left by [L]�1 to obtain

[L]�1[J 0][A] � [Y 0][Y ]�1[L]T [J ][A] = 0: (11)
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Fig. 4. Cutoff wavenumber of a ridged circular waveguide as a function ofh=a when � = 2:29�. The circles are from [9].

Since the matrices[Y 0] and [Y ]�1 are diagonal, theycommute; their
order in (11) can be reversed. We, therefore, multiply (11) from the
left by [Y ], after the previous reversal of order, to get

f[Y ][L]�1[J 0]� [Y 0][L]T [J ]g[A] = [K][A] = 0: (12)

The cutoff wavenumbers of the modes under consideration are,
therefore, given by the following determinantal equation:

detf[K]g = detf[Y ][L]�1[J 0]� [Y 0][L]T [J ]g = 0: (13)

It is now evident that (13) contains only terms which arefinite and
cannot exhibit any poles. The dashed line of Fig. 2 shows a typical
plot of the determinant given by (13) as a function ofkca for the
same dimensions as those of the solid line of the same figure. Note
that the physical zeros of the two determinants coincide. It is also
worth emphasizing the fact that the matrix multiplications appearing
in (13) involve diagonal matrices and can be written explicitly as

[K]mn = [Y ]mm[L]�1

mn
[J 0]nn � [Y 0]mm[L]nm[J ]nn: (14)

In the case where unequal numbers of modes are used, the singular-
value decomposition is used in both computing the inverse of the
matrix [L] as well as the minimum singular value of the matrix[K].

As mentioned earlier, the use of the minimum singular value to
locate the cutoff wavenumbers instead of the determinant circumvents
the problem of the poles. The presence of the poles in the matrix is,
however, reflected in the sharpness of the minima of the smallest
singular value. Fig. 3(a) shows the smallest singular value obtained
from the standard MFMT by carrying out the singular-value decom-
position of the matrix in (5) as a function ofkca when six modes are
used in each region. A step of 0.01 inkca was used in generating this
curve. Fig. 3(b) shows the smallest singular value of the matrix[K]

in (13) for the same number of modes and dimensions and the same
step inkca. It is evident that only five minima were wide enough to
be resolved with this step when the standard MFMT is used, while
the new pole-free version allows the resolution of eight modes using
the same step. A step of 0.001 (ten times smaller) was necessary
to locate the two minima atkca = 3:084 and kca = 4:245 [see

insets of Fig. 3(a)] when the standard MFMT is used. The sharper
minimum atkc = 6:55 was not located even with this small step
width. It then becomes obvious that the pole-free formulation leads
to a considerable reduction in CPU times.

In addition, the smoothness of the determinant within the new
pole-free version allows the use of rapidly converging root-finding
algorithms. In cases where large matrices are used, and to avoid
overflows in the determinant, it may be advantageous to use only
its sign in conjunction with the bisection method. The sign of the
determinant can always be computed, even if the determinant itself
causes an overflow or underflow, by proper scaling of the entries of
the matrix.

For comparison, Fig. 4 shows results for the cutoff wavenumbers
as obtained from the present technique. The circles are from [8].
The agreement of the two calculations is excellent. Furthermore, the
cutoff wavenumbers of the modes with an electric-wall symmetry
obtained from this paper agree with those of the sectoral and empty
waveguides in the proper limits,h=a ! 0 andh=a ! 1 [9].

III. CONCLUSIONS

An efficient technique to eliminate poles from the MFMT as ap-
plied to eigenvalue problems in electromagnetics was presented. The
poles are caused by inversion of singular matrices in the construction
of the determinantal equation. By avoiding such inversions, a pole-
free and well-behaved determinantal equation results. The minima of
the smallest singular value are much wider that those obtained from
the standard MFMT, thereby resulting in a substantial reduction in
CPU times required to locate the zeros.
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An Application of FDTD in Studying the End Effects
of Slotline and Coplanar Waveguide

with Anisotropic Substrates

Jaideva C. Goswami and Raj Mittra

Abstract—In this paper, the finite-difference time-domain (FDTD)
method is applied in conjunction with the generalized pencil of function
(GPOF) technique to evaluate the reflection coefficient from shorted
slotlines and coplanar waveguides (CPW) on anisotropic substrates, and
to extract the propagation constant along the line from these data. For
each frequency, the field solutions at different locations are processed
by using the GPOF technique to extract two complex exponents that
correspond to the forward and backward traveling waves, which provide
all the information about the reflection coefficient and the dispersion
characteristic of the transmission line. The advantage of combining
the GPOF technique with the FDTD method is that the reflection
coefficients can be obtained with a single run. Recognizing that there
is a dearth of results for the reflection coefficients of slotline and CPW-
line discontinuities with anisotropic substrates, the present problem is also
solved by using the spectral-domain method for the purpose of validation,
and the two results are found to compare quite well with each other.
For further validation, the FDTD and GPOF solutions are derived for
isotropic substrates, and are compared with the published theoretical
and experimental results.

Index Terms—CPW, FDTD method, GPOF method, SDA, slotline,
transmission-line discontinuities.

I. INTRODUCTION

One of the most challenging difficulties encountered in the design
of microwave and millimeter-wave integrated circuits is to accu-
rately characterize various kinds of transmission-line discontinuities.
Although the literature is replete with theoretical and experimental
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research related to microstrip discontinuities, the same cannot be said
about other types of transmission lines, e.g., coupled-microstrip lines,
slot lines, and coplanar waveguides (CPW’s). The end effects of a
number of transmission-line structures have been discussed in [1],
[2]. Some experimental results on slot lines have been reported in
[3] and [4], and CPW’s and slot lines have been the subjects of
investigation in [5]–[15]. A number of papers related to CPW lines
are contained in the September 1993 issue of IEEE TRANSACTIONS

ON MICROWAVE THEORY AND TECHNIQUES. Muller et al. [8] have
used the thru-line matrix (TLM) method to compute the inductance
and virtual line length for a CPW short discontinuity. Dibet al.
[10] have analyzed both open and shielded CPW discontinuities
by using the space-domain integral-equation method. The mode-
matching technique has been used by Rahman and Nguyen [14] to
compute theS-parameters for three-layer step discontinuities. More
recently, the finite-difference frequency-domain method has been
employed in [15] for the analysis of CPW short circuits.

All of the above-mentioned literature has dealt with isotropic
substrates—and the available results for anisotropic substrates are
relatively few. In this paper, we analyze the slotline and CPW
discontinuities on anisotropic substrates by using the full-wave finite-
difference time-domain (FDTD) method, which enables us to obtain
the characteristics of the discontinuities over a wide range of fre-
quencies with a single run.

In the conventional approach of analyzing the discontinuities
problems, an FDTD code is run twice, first for a continuous line and
then in the presence of the discontinuity, to derive the time-domain
fields for both the incident and reflected waves. In this paper, we
combine the generalized pencil of function (GPOF) method with the
FDTD method to compute the reflection coefficient in a single run.
First, we obtain the field solutions over the desired frequency band at
a number of equally spaced points located along the transmission line,
and subsequently use the GPOF to extract two complex exponents
for each frequency, which adequately represent the computed fields,
and to extract the forward and backward traveling waves from these
field data. The knowledge of the incident and reflected fields, in turn,
yields the dispersion characteristics of the line as well as the reflection
coefficient due to the discontinuity.

We use the cubic spline for the purpose of exciting the transmission
line in the FDTD calculations. The time-frequency window product
of the cubic spline is very close to 0.5—the lowest possible value
that corresponds to Gaussian-type pulses—and the cubic spline has
low-pass filter characteristics similar to the Gaussian. Consequently,
for all practical purposes, the cubic spline is similar to the Gaussian
and has the additional advantage of being compact in support, which
in turn, avoids the need for truncation.

This paper is organized as follows. In the Section II, we discuss
the FDTD solutions and their processing using the GPOF technique.
To validate the FDTD/GPOF results, we also solve the present
problem by using the spectral-domain analysis (SDA) which is briefly
discussed in Section III. In Section IV, we discuss and compare the
FDTD/GPOF and SDA results. For further validation, we apply the
FDTD/GPOF to slotlines and CPW’s with isotropic substrates, and
compare our solutions with the published theoretical and experimen-
tal results. Finally, we present some conclusions in Section V to
summarize our findings.

II. FINITE-DIFFERENCE TIME-DOMAIN SOLUTION

The geometry of the problem to be studied in this paper is shown
in Fig. 1. Although the figure shows the substrate with both the
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