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Abstract—Cutoff wavenumbers of transverse electric (TE) and filling [4]. The generalized spectral-domain approach (GSDA)
transverse magnetic (TM) modes of ridged circular waveguides \as applied to ridged circular waveguides with two or more
are accurately determined using the coupled-integral-equations symmetry planes [5].

technique (CIET). A set of coupled integral equations for the _ .
electrig fiel(d at t)he interfaces arr)e derive% andq then solved by The standqrd MMT exhibits the ph_enomenon of relative
the moment method. Basis functions which include the edge convergence in addition to slow numerical convergence when
conditions at all metallic edges are used. Results from this paper sharp metallic edges are present. On the other hand, the GSDA,
are compared with available data to demonstrate the accuracy which successfully includes the edge condition, relies for its
and efficiency of the approach. efficiency on finding closed-form expressions for its infinite

Index Terms—Circular waveguides, integral equations, ridge modal double sums [5]. The additional and arguably artificial

waveguides, waveguide theory. radial sums appear in the GSDA because equivalent electric
and magnetic current densities at interfaces are defined using
|. INTRODUCTION short-circuited gaps [5].

The coupled-integral-equations technique (CIET), which is

R'DGE waveguides are often encountered in microwavg,jieq to the ridged circular waveguide in this paper, includes

devices where broad-band operation is required, and{, eqge condition, eliminates the phenomenon of relative

dual-mode microwave filters and polarizers. Accurate analygi§nyergence, and, from the outset, avoids the additional sums
and design of these devices is achievable only through @fich appear in the GSDA. In this technique, a set of coupled
efficient account of the eigenvalues and eigenfields of thee o) equations in the tangential electric fields at the gaps of
ridged section and the coupling which takes place at the, jnterfaces are derived and solved by the moment method
discontinuities. _ ~using basis functions which include the edge conditions.
In dual-mode filters, a large number of modes in the ridgeg}, phenomenon of relative convergence is overcome by
section are necessary to_describe the sc_attering_ at the tranSigﬁ‘{bhasizing the fact that the dominant physics of the problem
from _hollqw-to-rldged cwcglar waveguide. _It_ Is, therefore, oq place at the sharp metallic edges of the ridges and refor-
of prime importance to dispose of an efficient method 10, jating the problem in terms of the true tangential electric
determine the cutoff wavenumbers and the correspondifgiys ot the different interfaces. The “modes” of the subregions
coupling coefficients of an arbitrarily large number of modeg, which the original structure is divided are given a minor
for arb|t'rary dlmenspns and cha’uons of the metallic ”dge'role, primarily in computing inner products. The additional
A variety of nume_rl_cal techniques have been used to tacl?lgdim sums are eliminated by imposing only the physical
this problem. The finite-element method (FEM) was used [f,,ngary conditions to the “modes” of each of the subregions.
the analysis and design of a compact polarizer [1]. Sun agghay the edge conditions, at eventually more than one ridge,
Balanis applied the magnetic-field integral equation (MFIE). ystematically included in the basis functions, thereby
using pulses as ba5|s. functions in a momeqt-method SOIUt'é’i’fburing numerical efficiency and fast convergence. The CIET
for the cutoff frequencies of transverse electric (TE) and trangsqles both symmetric and asymmetric structures, albeit the
verse magnetic (TM) modes of structures with two symmetfyyqes are assumed to fit into the polar system of coordinates.
plangs [2]. The mode-matchmg technique (MMT) was used by The CIET s first applied to determine the TE and TM
Balaji and Vahldieck to determine the onset of the f””dame”?dectra of a single-ridge circular waveguide and is described in

and higher order modes in ridged circular waveguides [3]yje details. To show its versatility and efficiency, a structure
The met_hoq of Ime; (MoL) was a\.pplleq to the. pf0b|em “with two ridges of arbitrary thickness and locations is then
symmetric ridged circular waveguide with partial d'elecm%nalyzed.
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and
Hi(p=b,¢)=H' (p=1b,¢), 0<¢<2m—0).
(3c)

At this point, we depart from the standard MMT where the
modal expansions in (1) and (2) are directly used in (3)
and instead introduce an additional degree of freedom in the
problem. Let us assume that the true tangential electric field
E, at the interface I-Il is given by an unknown functiai(¢).

It is then possible to combine (3a) and (3b) into a single
equation which guarantees that each one of themmhisys
satisfied. Indeed, if we require that the functi&ii¢) satisfies

the following condition

X(#)=0, 20r-6)<¢p<2r (4)

and rewrite (3b) in the form
Fig. 1. Cross section of a ridged circular waveguide and its subregions for

analysis. Elp=1b,¢) =X () (5a)
(5b)

17
in order to account for the propagation properties of the E.(p, ) = X(9)

different modes at arbitrary frequencies. then the boundary conditions (3a) and (3b) are automatically

A. Cutoff Wavenumbers of TM Modes satisfied.
To determine the functioX (¢), the modal expansions in
) and (2) are used in (5) to project out the modal coefficients

Wi ivide the structure into the two regions shown .
e subdivide the structure into the two regions sho . B, andC,, leading to

Fig. 1. In each region, the axial electric field, is expanded
in a series of “modes,” each of which satisfies all the boundary 1 1

In order to determine the cutoff wavenumbers of TM modegl
I

conditions except at the interface between the two regions and An = Jn(keb) (1 + 6,0)

over the metallic surface of the ridge at= b. At cutoff, the 2(rx—8) Cle(n)

only nonvanishing components of the electromagnetic field, / X(¢) cos(ng)dp = (6a)
which are tangential to the interface I-Il, afe and Hy. It 0 J"(fcb) )

is, therefore, sufficient to enforce the boundary conditions of B, = il

these two quantities at the interface. Both polarizations (cos Ju(keb) m

and sin) are analyzed simultaneously. Xfc(n)

2(7w—86)
In Region 1, the axial component of the electric figld is /0 X(¢) sin(ng) dd = T (keb) (6b)
expanded in a series of the form

and
E! =Y Ju(kep)[An B, si L@ (w=0)
e 9) 2;0 (kep)[An cos(ng) + By sin(ne)]. (1) 1 /2 X(¢) sin {2(7:@9)} i
In Region Il, the modal expansion is chosen to satisfy the Cm = (r = 0) Yi(koa)Ji(kob) — Ji(keoa)Yy(kcb)

boundary conditions gt = a, ¢ =0, and¢ = 2(w — 8): XUS(m)

~ Yi(kea) Jilkeb) — Ji(kea)Ya(keb)

3 (6c)
E(p, ) =Y Culi(kea)Yi(kep)
m=1 The following notations were introduced for convenience:

_ a sin M 2
Yilkea)Ji(kep)] [2(7r—9)} @ XIC(H)_;)/O( " X(9) costnayas (72

o 7T(1 + 6,0
Here,l = mn/2(x — 6), J;, andY; are Bessel and Neumann

functions of orderl, respectively. XIS(n) = 1 /2(7T X X(¢) sin(ng) do (7b)
Note that in both regions, we do not impose any specific 7 Jo

boundary conditions at the interface I-ll, as this would quan- . ,,, 1 Ar=0) . mne

tize the wavenumbers in the radial direction and introduce an (m) = (r — 0) /0 X(¢) sin |:2(7r _ 9)} dg-.

additional sum. (7¢)
The boundary conditions at the interface are
El(p=b, ¢) =0, 2Ur —6) < § < 21 (3a) At this point, it only remains to enforce the continuity of

. . the tangential magnetic field at the interface [i.e., (3c)]. Recall
Ep=b¢)=E (p=0b¢), 0<¢<2m—0) that in cylindrical coordinatesf, o 9E./dp. If the modal
(3b) expansion coefficients, as given by (6), are used in (1) and (2),
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which are in turn used in (3c), we obtain an integral equatid Basic Functions for TM Modes

for the function X(¢), namely In order to guarantee numerical efficiency, the basis func-

tions should include the nonanalytic nature of the axial com-

i Ji(kea)Y] (keb) — Yi(kea)J; (keb) ponentE. at the sharp metallic edges of the ridge. Since the
= Ju(kea)Yi(keb) — Yi(kea)Ji(keb) internal angle of the metallic edge is equalstg2, the basis
: mro T (kob) functions should vanish a$/? as the radial distance from the
- XM (m) sin [7} - n e edger approaches zero [8]. A set of basis functions which
2(mr — 6) —  J(keb)

satisfy this local requirement is given by
[Xe(n) cos(ng) + X12(n) sin(np)] =0.  (8)

sin {—2 k7r</)9 }
Note that the integral equation (8) holds only along thep,(¢4) = (m =) 730 k=1,23,---. (12)
interface I-1 [i.e., wherd < ¢ < 2(7 — 6)]. {¢[2(m - 6) - ¢l}

This integral equation is solved by the moment meth . . .
. . - . Note that these basis functions are perturbed versions of
[6]. To achieve numerical efficiency, we expand the functio ! S
he angular field distributions of the modes of an empty

X(¢) in a series of basis functions which contain as much as . .
: L : . Circular waveguide. It is, therefore, expected that the cutoff
possible of thea priori information we have on the behavior

of the tangential electric field at the interface, especially ﬁ/\slavenumk-)erofamode which corresponds to a TOC’W%‘.‘)
I5 determined accurately only when the basis function of

nonanalytic nature at the _sharp metalic edges of the rId%er'dern is used. On the other hand, the remaining solutions
Let B;(¢) denote a generic element of such a set of basis

functions such that cor_responc_iing to the_ higher order roots .6f(k.a) are then _
satisfactorily determined from the same number of basis
M function as the numerical results illustrate.
X(p) = Z ciBi(¢). 9) The spectra of these functions [i.e., the integrals in (7)] can
i=1 be expressed in terms of Bessel functions of the first kind of
order 1/6 [9], as shown in (13a)—(13c), at the bottom of the
The number of terms in this expansion, the value Mf following page.
is increased until convergence is achieved. It will be seen,When the argument of the Bessel function vanishes, which
however, that only a few terms are needed to accuratelgcurs whenn = k in (13c), the corresponding term should
determine the spectrum of the structure when basis functidsns replaced by
which contain the edge conditions are used.
To determine the constants, we apply Galerkin's method

to the integral equation (8) with (9). A homogeneous linear. 1./1 2 1 cos (km)Jyye(km)
set of equations in the coefficients results, namely ) 9 <§> <§> <7> B L\ /6
6 (5)
6 2
Alle] = 0. 10
[4][d] (10) (13d)
The entries of the square and symmetric maftity are
given by C. Cutoff Wavenumbers of TE Modes
The cutoff wavenumbers of the TE modes can be determined
= J! (kD) following an analogous analysis to that of the TM modes.
[A]i; = Z I (keb) The axial component of the magnetic field, from which
"ZQIC - e s the transverse components of the electromagnetic fields are
[Bi*(n)B;*(n)(1 4 bno) + B;*(n)B;*(n)] obtained, is expanded in modal series in each of the two

0\ = Ji(kea)Y] (keb) = Yi(kea)J] (kcb) regions. The boundary conditions at the metallic surfaces of
- <1 - ;) Z Ji(kea)Yi(keb) — Ji(kea)Yi(keb) Reglc_)n Il are |r_1<:luded in these_ expansions while no specific
o ~Hm=1 conditions are imposed at the interface I-lI:

- B; (m)Bj (m). (11) -

I _ .
The cutoff wavenumbers,. are determined as the roots of H.(p, ¢) = z_: Jn(kep)[Dn cos(ng) + Ey sin(ng)] (14)
the determinant of the matrd] or, to avoid the poles which =0

are usually present in the determinant and, equivalently, as the o0

zero of its smallest singular value [7].. It is worth e.mphasizingHgf(p, }) = Z FouJ{(kea)Yy(kep)

the way the modes of the two subregions appear in the theory; m=0

they are used only in computing the inner products which , mro

appear in the matrix elemenisl];;. These sums are tested ~ Yi(kea)Ji(kep)] cos 20r—6)] (19

for convergence, leaving only one parameter in the problem,
the number of basis functiond/, thereby eliminating the The boundary conditions of the TE modes at cutoff correspond
phenomenon of relative convergence. to the vanishing ofF;, over the metallic surface of the ridge
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and the continuity o, and H. along the interface |-, i.e.,  To solve this integral equation, we expand the functiip)

. in a series of basis functions which satisfy condition (18) along
Ey(p =10, ¢) =0, Ar—0)<p<2m (162)  ith the edge conditions. LeB; denote a generic element of
El(p=b,¢)=EJ(p=0b,¢), 0<¢<2(mr—06) (16b) such a set of basis functions

and

M
Hl(p=b,¢)=HT(p=b,¢), 0<¢<2(r—0). (16c) Y(¢) = diBi(¢). (20)
=1

To enforce the boundary conditions of the electric field KlG@pplying Galerkin's method, we obtain a set of linear equa-
and (16b)], we assume that the tangential electric figldat 1ions in the coefficientsl.:

the interface is given by an unknown functidf¢) which

vanishes over the metallic part of the interface I-II: [G]ld] =0 (21)
Y(¢)=0, 2r—0) <P <27 (17) where the entries of the matrix7] are given by
and rewrite (16b) in the form 1-6) < e ATTe
Ej(p="b, ¢) =Y($) o

E(p=b, ¢) =Y(9). (18) Y/ (kea) Ji(keb) — Ji(kea)Yi(keb) _i In(kecb)
Y/ (kea)Jj(keb) — Jj(kea)Y/ (kcb) S} (keb)

n

n=0

Using the expansions aff, in Regions | and Il in (18), we ~es N ETe 1\ A Ts
can express the modal expansion coefficiefts, E,,, andF,,, (B *(m)B;“(n)(1+6n0)+Bi*(n)B;*(n)].  (22)

in terms of the spectra of (¢), which are then used in the g jn the TM case, the cutoff wavenumbers are determined
continuity of the magnetic field?. to derive the following 55 the roots of the determinant of the square and symmetric
integral equation forY’(¢): matrix [G]. To avoid the poles in the determinant, the zeros of

i F1m) Y (k) Jy(keb) — Ji(kea)Yi(keb) ng smallest singular value of this matrix are located instead
2 Y/ (hoa) J} () = J{(kea) Y[ (kD)
'COS{ mrg } = Inlkeb) D. Basis Functions for TE Modes
2r—0)] = J(keb) The basis functions used to expaig, at the interface

. [ch(n) cos(ne) + yis (n) sin(ng)] = 0. (19) should capture the salient features of this quantity to guarantee
numerical efficiency. Sinc& is normal to the axis of the
Again, this equation holds only whep € [0, 2(7 — 6)]. 90° metallic wedge, it becomes singularsas'/? as the radial

Jise [kg +n(r — 9)}

gy |L/6
BTy =0

Ble(n) = %) <1 _ g) (1/2)1(2/3)

5 om sin [kg +n(r — 9)}

+ w0 o sin [kg —n(w—e)} (133)
4 2
Ble(n) = % <1 - %)F(1/2)F(2/3) e [k§ i 71(71'9—19/)6} cos [kg +n(r — 9)}
k%—l—n(wg )
+J1/67er§ (:rn_(z)_le/)ﬁu cos [kg —n(r — 9)} (13b)
kZ -t
- 1 J1/6|:|m_ k%} T J1/6|:(m+k)g:| -
B, **(m)==T(1/2)I'(2/3) 5 cos [(m—k)o| ——————75 cos |(m+ k) (13c¢)
b gt/ ‘(m—k)z‘/ [ 2} ‘(erk)%‘/ [ + 2} ¢
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distance to the axis of the wedgepproaches zero [8]. Taking
into account the fact that there are two wedges located-at)
and¢ = 2(w — 8), a set of basis functions which satisfy these
requirements is given by

o=

{o2(r — 6) — ¢l}1/%

The spectra of these basis functions in each of the two regions
can be expressed in terms of Bessel function of the first kind
of order 1/6 [9], as shown in (24a)—(24c), at the bottom of
the page.

Note that the modes of the two subregions are again all
included in the theory, and in a rather simple way; they appear
only in computing the inner products in the quantitj€g;;.

The phenomenon of relative convergence is eliminated by
testing these sums for convergence, thereby leaving only dfig 2. Cross section of asymmetric double-ridge circular waveguide and its
free parameter in the numerical solution, i.e., the number gfPregions for analysis.

basis functionsi.

This analysis shows how an integral equation for an ilis limited to the case wheré < b and the depth of the two
behaved quantity (the tangential electric field at the interfacejiges are smaller than the radiusof the empty cylinder.
can be derived and solved. The case where more than die analysis is straightforwardly adapted to other situations
ridge is present in the structure and where no symmetrydach as two ridges of equal depths, or one ridge exceeding
present requires a set of coupled integral equations instetiek center of the empty cylinder. We first consider the cutoff
The following sections present an analysis of a double-ridgeavenumbers of the TM modes.
structure which is eventually intended for dual-mode filters.

IV. A CuToFF WAVENUMBERS OF TM MODES

IIl. ANALYSIS OF ASYMMETRIC DOUBLE-RIDGE WAVEGUIDE The cross section of the structure is divided into four

The structure under consideration is shown in Fig. 2. Tleibregions, as shown in Fig. 2. In each of these regions,
metallic walls are assumed lossless, the locations and thithe potential of the TM modes are expanded in modal series
nesses of the two ridges arbitrary. For simplicity, the analysighich include as much of the boundary conditions as possible.

=gt PG R

‘(k—1)4 +n
xcos (= 1)5 +n(r = 0)] + o ;1)5 ;rn_(ﬂ;; 19/)6H cos | (k= 1) —n(r = 6) (242)
(k—l)z—n 5
. Ll o\ 1) 2\ Jye| (k= DT +n(r—0)]
BPmy==(1-2)r(z)r(= =
e
X sin [(k - l)g +n(m — 9)} - s H(k_ 1)5 —ni _le/)GH sin [(k— l)g —n(r — 9)} (24Db)
‘(/f—ng—n(”;

1 2 o -
BITe(m) :F<§>F<§> J1/6{|m—(/€—1)|§} COS{[m_(k_l)]z}_i_J1/6{[m+(k—1)]§}

U8m0) pm e—t§ | 2 s

oS {[m—i—(k - 1)]%}

(24c¢)
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However, we do not impose any conditions at the interfac¥de now rewrite the boundary conditions (26¢)—(26€) in the
between the different adjacent subregions. Taking into accodoifowing form:
the fact thatE. is proportional to the potential, we have

modal expansions (25a)—(25d), shown at the bottom of the El(p=d, ¢) =X1(¢)
page. Here] = [mn/2(m — t)], u = (mw/2s), andn = El(p=d, ¢) =X,(¢) (28a)
[mr/2(mr —r — s —1t)]. I, _

At cutoff, the only nonvanishing components of the elec- Eljl(p =b, ¢) =Xs(9)
tromagnetic field which are tangential to the interfaceszre E 7 (p=0b,¢) =X2(9) (28Db)
and H,, which is proportional t®E. /dp. and

The boundary conditions of the TM modes are the continuity EM(p=10, ¢) =Xs(¢)

f the t tial electri d tic fields at the interf ,
of the tangential electric and magnetic fields at the interfaces EV(p=0b, ¢) =X3(o). (28c)

and the vanishing of. over the metallic portions of these

interfaces, namely

El(p=d, ¢)=0, 2s<¢<2s+1), (26a)
EX(p=b,¢)=0, 20m—r—s—t)<¢<2r (26b)
El(p=d, ¢)=El(p=d, ¢),

—2Ar—s—1t) 2s, (26c)

Ef(p=b,¢)=EM(p=0b,¢), 0
Ef(p=0,¢)=EV(p=1, ¢),
—2m—s—t) L p< =21

(26e)

Hi(p=d, ¢)=H} (p=d, ¢),
—2Ar—s—t) < $p <28 (26f)
H'(p=b¢)=H"(p=0b,¢), 0<¢p<2s (260)

and
Hi'(p=0b,¢)=H"(p=1, ),
—2(r—s—t)<p < =2r. (26h)

It can be easily verified that the boundary conditions of the
tangential electric field are nowll satisfied as long as the
functions X (¢), X2(¢), and X3(¢) satisfy condition (27). To
derive a set of coupled integral equations for these functions,
the modal expansion coefficients in (25) are expressed in terms
of the spectra of these functions in the four subregions and
then substituted in the continuity conditions of the tangential
magnetic fieldH,. The algebra is straightforward and leads
to the three coupled integral equations shown in (29), at
the bottom of the following page, which holds when e
[-2(r — s — t), 2s], shown in (30), at the bottom of the
following page, which holds when € [0, 2s], and shown in
(31), at the bottom of the following page, which holds when
$ € [-2(m—s—1t), =2r]

In these integral equations, the transformed functi&inare
defined by (32a)—(32g), shown at the bottom of the following
page.

To solve these three coupled integral equations, we expand
the functionsX;(¢) into a series of appropriate basis functions.
LetQi(¢), Ri(¢), andS;(¢) denote generic elements of the set

To enforce the boundary conditions of the tangential elect® Pasis functions forX; (¢), X2(¢), and X3(¢), respectively,
field at the different interfaces, we introduce three unknowdt/ch that

functions X (¢), X2(¢), and X3(¢), which are equal t&. at

M
the three interfaces I, [I-1l, and II-1V, respectively. We also X - O, 33
require thatX; (¢), X2(¢), and X3(¢) satisfy the following 9) kz_:_lcka(d)) (332)
conditions: M
Xo(¢) = D diRu(9) (33b)
Xi(¢) =0, 25 < p < 2(s+1t) (27a) k=1
Xo(¢) =0,  unlessh < ¢ < 2s (27p) and u
and Xs(d) = > enSu(9). (33¢)
X3(¢) =0, unless—2(r —s—t) < ¢ < —2r. (27c) k=1
Elp, ¢) = Z Jn(kep)[An cos(ng) + By, sin(ne)] (25a)
n=0
I7 . = . [ma(éd —2s)
EM(p, ¢) = [Cudikep) + DimYi(kep)] sin = h (25b)
m=1
B (p, )= " DunlYp(ket)Julkiop) = Yolhop)Jy(kea)] sin [ F2-g) (25¢)
m=1
ED (0, )= Y BnlVy (b)) = Yy (b))l sin | 57020 (250)

3
Il
=

(3



AMARI et al: ANALYSIS OF RIDGED CIRCULAR WAVEGUIDES BY COUPLED-INTEGRAL-EQUATIONS TECHNIQUE 485

For simplicity, we take the same number of basis functions The cutoff wavenumbers of the TM modes of the structure
at each interface. are obtained as the zeros of the determinant of the extended
Following the standard moment method, we applgatrix appearing in (34) or, equivalently, the zeros of its

Galerkin's method to the integral equations with themallest singular value.
expansions (33) resulting in a linear set of homogeneogs

equations in the expansion coefficients d;, and ¢; as Basis Functions for TM Modes

follows: The following set of basis functions which include the edge
conditions at each of the metallic wedges of the two ridges
[Alld + [B[d] + [C][e] =0 are used in this paper:
[D][e] + [E)ld) + [F][e] =0 e — 25
(Gl + (A + ][] = 0. (34) sin [m}
The entries of the matrices appearing in (34) are given in Quld) = [(2s — )P+ 2(m — s — £)]1/3’
Appendix A. k=1,2--- (35
i (X372 (m) + X4 (m)) (Y] (ked) Ji(ked) — J{ (ked)Yi(ked)] +X1”S(m)[J{ (ked)Yi(keb) = Yy (ked) Ji(keD)]
— Jilkd)Yi(kob) = Ji(k.b)Yi(k.d) Jilkd)Yi(kob) — Ji(k.b)Yi(k.d)
- o~ Sl (ked) | o . ,
-sin [%} - nzzzo ngkcd; [XfC(n) cos(ng) + X{*(n) s1n(n</))] =0 (29)

S [t vrreg o YD) Tlked) = RUDYilked)]  pro  SkD)Ylkeb) = Y (ki) Ji(keb)]
> Lo + X8 e = By ) G = DD )

m=1
. m7r(¢— 23) = - s J;L(kcb)yu(kca) - Ju(kca)y/i( c .| mme .
o {W} - ,;XZ{H O N O AR A Sm{ 25 } =0 (30)

oo

3 Bt + o R e ) S ) — e )
[ s S )0 o
80 =g [ ) st (322)
w1 [ 225(77_5_” X1(¢) sin(ng) do (32b)
o=ty [ o[G0 20
o) = s 025 Xalo) sin | "2 =2y (32d)
X;Uszl 025X2(¢) sin {m2—7j)} d¢ (32f)
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sin [@} and

Ri(@) =, k=12, @6) Hlp=0b¢)=H(p=1b, ¢),

[¢(4s = ¢)] —2Ar—s—t) <P < —2r. (39h)

kn(¢p+2r)
S m Instead of following the MMT and deriving a matrix equa-

Sk(¢) = T tion in the modal expansion coefficients of (38), we introduce

— o —_ —_— —_ > /3 ? L]

[P +2r)( + dr 4‘2 _4§ 22f ?]' (37) unknown functions which describe the tangential electric field

E, at the gaps of the interfaces. LE{(¢), Y2(¢), andY3(¢)
The spectra of these basis functions in each of the subregigiesiote the true distributions &, at the interfaces I-II, I1-Il,
can be expressed in terms of Bessel functions of the first kiadd -1V, respectively. The functiokiz(¢) is nonzero only in

of order 1/6. They are given in Appendix A. the interval0 < ¢ < 2s whereasYs(¢) is nonzero only when
2(s+1t) < ¢ < 2(x —r). To ensure tha¥,, vanishes on the
C. Cutoff Wavenumbers of TE Modes metallic portion of interface I-Il, we also require that
The cutoff wavenumbers of the TE modes are determined Yi(¢) =0, 25 < Pp < 2(s+1). (40)

following similar steps to those of Section IlI-A for the TM
modes. The transverse components of the electromagnetic f|8l}§
of a TE mode are derivable from the axial componéht

boundary conditions (39) are now rewritten in the fol-
ng form:

In each of the four subregiondy. is expanded in modal El(p=d, ¢) =Yi(¢)
series which satisfy as much of the boundary conditions as Eil(p =d, ¢) =Yi(¢) (41a)

possible. However, these expansions are not required to sati
any specific term-wise boundary conditions at the interfaces.

i E(p=10, ) =Y2(¢)
We, therefore, start from expansions (38a)—(38d), shown at the 6 \P=0 2
bottom of the page. Heré, 1., andy are given by the same EN(p=1b, ¢) =Ya(¢) (41b)
E;(p;esosmns as those of the TM case with the additional term Eil(p — b, ¢) = Ys(e)
At the cutoff of a TE mode, the only nonvanishing compo- EY(p=1b, ¢) =Ys(¢). (41c)

nents of the electromagnetic field which are tangential to tyejg important to keep in mind that (41) holds only over the
interfaces ard{. and £, which is proportional td)H../0p.  intervals of¢ where the functiond; are nonzero.

The boundary conditions of the problem can be written in Using the modal expansions df,, which are obtained
the following form: from (38), we can express the modal expansions in terms
Ei(p =d, ¢) =0, 25 < < 2As+1) (39a) of the spectra of the functiqnl'si in_the four re_gio_ns. The;_e

7 expressions are then substituted in the continuity conditions
Eg(p=1b,¢) =0, Ar—r—s-1)<¢<2n of H. to derive the following three coupled integral equations
(39b) in the functionsY;(¢), shown in (42)—(44), at the bottom
Ei(p =d, ¢) :Eif(p =b, ¢), of the following page. Equations (42)—(44) hold over the

_m—s—t)<Pp<2s (39¢) same ranges ap as (29)—(31), respectively. The transformed
7 I -~ functionsY are defined by (45a)-(45g), shown at the bottom
ES(p=0,¢)=FEy ] (p =10, ¢), 0<¢<2s (39d) of the following page. The functions; are expanded in series
Eff(p=0b,¢)=ELV (p=1, ¢), of basis functions which include the edge conditions at the four
—2r—s—t)<¢p< -2 (39e) Wwedges of the two ridges. Ldt;, Q;, andR; denote elements
o of these sets of basis functions such that
Hi(p=d, ) =H(p =10, ¢), .
—2r—s—t)<Pp<2s (39 Yil¢) = aPi(e) (46a)
H'(p=b,¢)=H!"(p=b,¢), 0<¢<2s (399)
Hl(p, ) = Ju(kep)[Ap cos(ng) + By, sin(ng)] (38a)
n=0
II - mr (¢ — 2s)
HMY(p, ¢ nz_:o [Crn Ji(kep) + Dy Yi(kep)] cos {72 — (38b)
III - mme
BT (p, ¢ z_j Bl () () = o) )] os | " (38¢)
Y (p Z F Ty (kep) = Yo(kop) T (ko)) cos | —EOH20) (38d)
) — rn C C n C 2(7[' —r—5— t)
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D. Basis Functions for TE Modes

M
Yo(¢) = > drQu(9) (46b)
k=1

The basis functions should include whatever information
we have about the behavior of the functions they are used to
Ys(¢) = Z xRy (). (46c) represent, especially the nonanalytic or singular properties. In

this case,E, is singular asr~%/% as the radial distance to
the axis of the metallic wedge approaches zero [8]. Taking

into account the presence of the two wedges, we propose the
Applying Galerkin’s method to the integral equatlon%uowmg set:

(42)—(44) with (46), we obtain a set of linear homogeneous

equations in the expansion coefficienisd;, ande; as follows: oS (k= 1D)m(¢p —2s)
2r —t)
P(¢): 173 ]f:]_727
(Al + [B]ld) + [C][e] =0 (o (48)
[Dlle] + [E][d] + [F][e] =0 N o :
[Alc] + [H][d] + [1][¢] =0. (47) The inclusion of the proper edge conditions in the basis

functions in Regions Il and IV are achieved through a
mirroring process. Indeed, by forcing the basis functions to be
The entries of the matrices appearing in this equation are giveven with respect to the metallic surfaces located at 2s
in Appendix B. and ¢ = 2s + 2¢t, we are guaranteed that the edge conditions

S [ 1951on) + 347G ) ihi) = Jihed)YiGhe)] | T ) e Vi) = Y e ()
Jz’(kcd)Y/(/ﬂcb) — T ko) (e Ty Y} () — SR Cred)

m=0

. cos [mw;:)_ t28 } J’ Yllc (n) cos(ng) + YI*(n) sin(np)] = 0 (42)
- IIc IIc (kcb)‘] (kcd) J (kcb) (kcd)] IIc J/(k b)Y(k b) (kcb)‘] (kcb)]
r;{[Yé (m) + 3575 (m)] Jl’(k d)Yl’(kcb) J(kcb)Yl’(k 5 T Sy, l(k b) - Jl(kcb)Y{l’(kcd)}
ma(p — 2s) el J ! (kb)Y (kea) = Ju(kea)Y (keb) mnd|
'COS{ 20r — 1) } nzo R A A O AT ACE) COS{ 25 } =0 (43)
— [ rorre o ITe Y (keb) Ji(ked) — J{(keb)Yi(ked)] | orre, \ Ji(keb)Yi(keb) — Y7 (keb) Ji(keb)]
ZZ{D” )+ F ) S ) = o) T S e on) = e )
. COS ma (¢ — 2s) Ve J;](kcb)Yn( kea) = Jy(kea)Y; (keb) cos mr(p+2r) | _
- ZY ") T EDY kea) — (k)Y (kD) ) = “
vl S N v cos(n
o0 = gy [y Vi) costnd) o (452)
W= [ ) s ds (45b)
-Ilc _ 1 2 oS m(p — 2s)
) = = Josean B0 "R @50
-I1c _ 1 2 cos mr(¢p — 2s)
) = sy [, a0 eos M2 E= 2 g (as0)
-Ilc _ 1 - oS mr(p — 2s)
e o = W I UL e e
IITc _ 1 % mm
Y. = m ; Y2(¢) cos [ } d¢o (45f)
~ Ve B 1 —2r mr(¢p+ 2r)
) = e 7= Joaeore PO T e 59
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Fig. 3. Cutoff wavenumbers of the first TE modes of a single-ridge circular waveguide. The circles are from [1].

at these surfaces are accounted for. The edge conditions at the TABLE |

metallic Wedges a&) = 9 and¢ =0 are straightforwardly CuToFF WAVELENGTH A../2a OF THE FIRST FEW MODES OF ASINGLE RIDGE FOR
. . . . - = 0.9 AND ¢ = 0.02 rad As OsTAINED FROM THE CIET AND THE MMT
included through the weighting function. We finally have the fa

following basis functions: Perturbed Mode | A./2aMMT [3] | A./2a CIET
TE11 1.7202 1.7093
(k—Dmo TE31 1.0446 1.0377
€os | 5 TE51 0.7560 0.7560
w(P) = E=1.92 ... 49 TE12 0.5896 0.5871
Qul(9) [p(4s — P)|1/3 7 T (49) TE32 0.4688 0.4747
(k _ 1)7r(</) + 27,) TMO01 1.2887 1.2901
COS |:2 - P :|
Ri() = ror—s-?) , @
[—(¢ +2r)(p + 4m — 4s — 4t — 27)]/3
k=12 ... (50) Perturbed Mode | A./2aMMT [3] | A\./2a CIET
B ’ TE11 1.9430 1.9226
Taking into account the ranges of these basis functions, it can ?gg’} (1);2;2 é‘gggg
be easily verified that they include the proper edge conditions TE12 05943 0.5916
at all the metallic walls and edges. The spectra of these basis TE32 0.4777 0.4761
functions are given in Appendix B. TMo1 1.1943 1.2056

b
V. NUMERICAL RESULTS AND DISCUSSION ()

The present technique is first applied to the case of(la) summarizes the results for cutoff wavelengths of the first
single-ridge circular waveguide. few higher order modes along with the results obtained from

To validate the theory and the computer code, the cubhe MMT [3]. Good agreement is again observed between the
off wavenumbers of the first two modes which corresportivo sets of results.
to the unperturbed fundamental mode of an empty circularThe convergence of the numerical solution as the number
waveguideT E; were computed using the present techniquaf basis functions is increased is shown in Table 1l(a) and (b).
and are shown in Fig. 3. The circles are from [1] for th& can be clearly seen that once enough basis functions are
same dimensions of the structure. Good agreement betwesed for a cutoff to be encountered, the numerical solution
the two results is observed. Two basis functions were useddonverges rapidly, thereby confirming the judicious choice of
generating the data. The inner products which appear in tte basis functions. The reason for the absence of some roots
matrix elements in (22) reach convergence with 30 terms when the number of basis functions is not large enough, is
the sums. due to the angular distribution of the fields of the modes and

Cutoff wavelengths of higher order modes were also inveiie nature of the chosen basis functions which are perturbed
tigated for a number of dimensions of the ridge. Table I(a) an#rsions, through the edge conditions, of the modal fields
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TABLE I TABLE IV
CONVERGENCE OF CUTOFFS (k.a) OF THE FIRST CONVERGENCE OFCUTOFFS OFTM MODESWITH k.a < 6 VERSUS THENUMBER
FeEw TM MODES OF A SINGLE-RIDGE VERSUS THE OF Basis FuNcTIONS. b/a = 0.5, d/a = 0.5, r = ¢ = 2.5° AND 2s = 130°
pa— |4 p— 4]
NUMBER OF BAsis FUNCTIONS. b/a = 0.5, 6 = 2.5 V=) 3 7 R 6 7 3
M=2 3 4 5 2.596 | 2.584 | 2.574 | 2.574 | 2.574 | 2.572 | 2.572
2.6215 | 2.5599 | 2.5599 | 2.5599 4.598 | 4.056 | 3.990 | 3.990 | 3.988 | 3.986 | 3.986
3.8478 | 3.8478 | 3.8379 | 3.8379 4.798 | 4.776 | 4.672 | 4.664 | 4.662 | 4.658 | 4.654
5.4890 | 4.1547 | 4.1547 | 4.1547 5.738 | 5.052 | 4.776 | 4.768 | 4.766 | 4.764 | 4.764
5.6010 | 5.1756 | 5.1756 5.892 | 5.716 | 5.686 | 5.648 | 5.642 | 5.638
5.716 | 5.6010 5.858 | 5.856 | 5.848 | 5.846 | 5.842
5.992 | 5.976 | 5.964 | 5.963
(@
@
M=2 3 4 6 8
1.5743 | 1.5743 | 1.6342 | 1.6341 | 1.6341
1.8389 | 1.8389 | 1.8389 | 1.8774 | 1.8807 M=3 4 5 6 7 8
2.6711 | 2.6711 | 2.5805 | 2.6107 | 2.6118 1.498 [ 1.528 | 1.562 | 1.562 | 1.566 | 1.570
3.7371 | 3.7371 | 3.7371 | 3.0605 | 3.0846 1.756 | 1.764 | 1.812 | 1.812 | 1.814 | 1.814
3.6898 | 3.7052 2.096 | 2.364 | 2.564 | 2.568 | 2.584 | 2.594
2.388 | 2.630 | 2.704 | 2.724 | 2.758 | 2.764
(b) 3.078 | 3.328 | 3.368 | 3.584 | 3.602 | 3.630
3.668 | 3.696 | 3.762 | 3.786 | 3.812 | 3.814
TABLE Il 3.726 | 3.832 | 3.834 | 3.892 | 3.966 | 3.982
CuTtorFF WAVENUMBERS (k.a) OF THE FIRST EIGHT TM M ODES OF 4.094 | 4.098 | 4330 | 4.344 | 4.432 | 4.514
AN ASYMMETRIC DOUBLE-RIDGE STRUCTURE FORDIFFERENT
VALUES OF b/a AND d/a. r =t = 2.5° AND 2s = 130° (b)
b/a=095] 08] 06| 05| 03
d/a=090] 07] 05| 03] 01 . . .
2.402 12430 | 2570 | 5796 [ 3316 .Tables (@) anq (b) summarize the results optalneq using
3.776 | 3.724 | 3.986 | 2.796 | 3.968 this present technique for two different sets of dimensions of
3.876 | 4.072 | 4.654 | 4.200 | 4.614 the two ridges. For small ridges, our results reduce to those
g‘gg g-;gi g-ggg g'izg ggzg of the corresponding empty circular waveguide. These results
5534 | 5.868 | 5.842 | 5.624 | 5.948 were obtained using eight basis functions at each interface and
6.338 | 6.548 | 5.962 | 5.824 | 6.706 30 terms in the inner products.
6.406 | 6.690 | 6.772 | 6.404 | 7.422 The convergence of the numerical solution of the cutoff
@ wavenumbers of the first few TM modes (i.e., those whose
cutoff wavenumbers are such thate < 6) is shown in
b/a=095] 08| 06] 05] 03 Table IV(a). It is evident that even for this asymmetric struc-
d/2a=090| 07| 05| 03] 01 ture, the CIET converges rapidly once enough basis functions
1.830 | 1.756 | 1.570 | 1.362 | 1.088 for a root to be encountered are used. The convergence of the
1845 | 1850 1814 1.768 | 1.672 TE modes withk.a < 5 is shown in Table IV(b).
3.032 | 2.866 | 2.594 | 2.446 | 2.340 We al N . din th
3052 | 2974 | 2764 | 2.690 | 2.630 e also repo_rtt at spurious roots were encount_ere in the
3.832 | 3.818|3.630 | 3.598 | 3.582 numerical solution for the TE modes in both the single- and
4118 | 3.840 | 3.814 | 3.812 | 3.820 double-ridge structures. These roots were always eliminated
4.166 | 4.126 ) 3.982 ) 3.958 | 3.942 when a large enough number of basis functions were used.
4318 | 4.588 | 4.514 | 4.512 | 4.508 . : o :
For example, if the presence of a root is suspicious, adding
(b) one or two more basis functions leads to its removal if it is

indeed a spurious root.
of the empty waveguide. It was noticed that a mode is
encountered once a basis function with the proper angular
distribution is used. For example, one or two basis functions

are sufficient to determine the cutoff wavenumbers of the The CIET was successfully applied to determine the cutoff
perturbed modes corresponding to the rootsJgfk.a) Or  \ayenumbers of single- and double-ridge circular waveguide.
Jo(kea). In addition, it is important to note that we analyzedne inclusion of the edge conditions in the basis functions
both symmetries in one step which effectively reduces thg each of the sharp metallic wedges of the ridges makes the
number of contributing basis functions to a mode of a givespproach numerically efficient, as shown by the convergence
symmetry. Had we taken advantage of the symmetry of tegudy. The approach allows the inclusion of the singular
structure, the convergence of the solution would have begshavior of the electromagnetic field at more than one ridge
much faster. However, the fact that the technique recognizesm the outset. The modes of the subregions are also all
the presence of the symmetry in the structure provides meluded in the theory by testing the sums in the inner products
additional confirmation of its validity. for convergence. The technique handles both symmetries in

The second structure investigated using the CIET consisise step and is easily applicable to situations where more
of two asymmetric ridges in a circular waveguide (see Fig. Zhan two ridges are present.

VI. CONCLUSIONS
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APPENDIX A of the integral equations (42)—(44) against the basis functions

In this appendix, we give the expressions of the transform&d-8)—(B-16), shown at the top of the page.

basis functions for TM modes as well as the entries of the
matrices in (34). The transformations of the basis functions as
defined by (32) are expressed in terms of Bessel functions o
the first kind of order 1/6 [9]¢ = 0.5I'(3)I'(3)], shown in
(A.1)—(A.7), at the top of page 490. The entries of the matrices
in (34) follow from taking the dot products of the integral
equations (29)—(31) against the basis functions (A.8)—(A.13)y;
shown at the bottom of page 490, and (A.14)—(A.16), shown
at the top of the previous page. 2]

APPENDIX B [3]

In this appendix, we give the expressions of the transformed
basis functions for TE modes as well as the entries of th&l
matrices in (47). The transformations of the basis functions as
defined by (45) are expressed in terms of Bessel functions of
the first kind of order 1/6 [9]¢ = 0.5(5)I'(3)], shown in [l
(B.1)-(B.7), at the bottom of the previous page. The entries
of the matrices in (47) follow from taking the dot products
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