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Analysis of Ridged Circular Waveguides by
the Coupled-Integral-Equations Technique
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Abstract—Cutoff wavenumbers of transverse electric (TE) and
transverse magnetic (TM) modes of ridged circular waveguides
are accurately determined using the coupled-integral-equations
technique (CIET). A set of coupled integral equations for the
electric field at the interfaces are derived and then solved by
the moment method. Basis functions which include the edge
conditions at all metallic edges are used. Results from this paper
are compared with available data to demonstrate the accuracy
and efficiency of the approach.

Index Terms—Circular waveguides, integral equations, ridge
waveguides, waveguide theory.

I. INTRODUCTION

RIDGE waveguides are often encountered in microwave
devices where broad-band operation is required, and in

dual-mode microwave filters and polarizers. Accurate analysis
and design of these devices is achievable only through an
efficient account of the eigenvalues and eigenfields of the
ridged section and the coupling which takes place at the
discontinuities.

In dual-mode filters, a large number of modes in the ridged
section are necessary to describe the scattering at the transition
from hollow-to-ridged circular waveguide. It is, therefore,
of prime importance to dispose of an efficient method to
determine the cutoff wavenumbers and the corresponding
coupling coefficients of an arbitrarily large number of modes
for arbitrary dimensions and locations of the metallic ridge.

A variety of numerical techniques have been used to tackle
this problem. The finite-element method (FEM) was used in
the analysis and design of a compact polarizer [1]. Sun and
Balanis applied the magnetic-field integral equation (MFIE)
using pulses as basis functions in a moment-method solution
for the cutoff frequencies of transverse electric (TE) and trans-
verse magnetic (TM) modes of structures with two symmetry
planes [2]. The mode-matching technique (MMT) was used by
Balaji and Vahldieck to determine the onset of the fundamental
and higher order modes in ridged circular waveguides [3].
The method of lines (MoL) was applied to the problem of
symmetric ridged circular waveguide with partial dielectric
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filling [4]. The generalized spectral-domain approach (GSDA)
was applied to ridged circular waveguides with two or more
symmetry planes [5].

The standard MMT exhibits the phenomenon of relative
convergence in addition to slow numerical convergence when
sharp metallic edges are present. On the other hand, the GSDA,
which successfully includes the edge condition, relies for its
efficiency on finding closed-form expressions for its infinite
modal double sums [5]. The additional and arguably artificial
radial sums appear in the GSDA because equivalent electric
and magnetic current densities at interfaces are defined using
short-circuited gaps [5].

The coupled-integral-equations technique (CIET), which is
applied to the ridged circular waveguide in this paper, includes
the edge condition, eliminates the phenomenon of relative
convergence, and, from the outset, avoids the additional sums
which appear in the GSDA. In this technique, a set of coupled
integral equations in the tangential electric fields at the gaps of
the interfaces are derived and solved by the moment method
using basis functions which include the edge conditions.
The phenomenon of relative convergence is overcome by
emphasizing the fact that the dominant physics of the problem
takes place at the sharp metallic edges of the ridges and refor-
mulating the problem in terms of the true tangential electric
fields at the different interfaces. The “modes” of the subregions
into which the original structure is divided are given a minor
role, primarily in computing inner products. The additional
radial sums are eliminated by imposing only the physical
boundary conditions to the “modes” of each of the subregions.
Finally, the edge conditions, at eventually more than one ridge,
are systematically included in the basis functions, thereby
ensuring numerical efficiency and fast convergence. The CIET
handles both symmetric and asymmetric structures, albeit the
ridges are assumed to fit into the polar system of coordinates.

The CIET is first applied to determine the TE and TM
spectra of a single-ridge circular waveguide and is described in
ample details. To show its versatility and efficiency, a structure
with two ridges of arbitrary thickness and locations is then
analyzed.

II. A NAYLSIS OF SINGLE RIDGE CIRCULAR WAVEGUIDE

The CIET is first applied to the structure shown in Fig. 1. It
consists of a metallic ridge of inner radiusand outer thickness

in a lossless metallic circular waveguide of radius. As the
structure (which is assumed infinitely long in the-direction) is
air-filled, it is sufficient to determine the cutoff wavenumbers
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Fig. 1. Cross section of a ridged circular waveguide and its subregions for
analysis.

in order to account for the propagation properties of the
different modes at arbitrary frequencies.

A. Cutoff Wavenumbers of TM Modes

In order to determine the cutoff wavenumbers of TM modes,
we subdivide the structure into the two regions shown in
Fig. 1. In each region, the axial electric field is expanded
in a series of “modes,” each of which satisfies all the boundary
conditions except at the interface between the two regions and
over the metallic surface of the ridge at . At cutoff, the
only nonvanishing components of the electromagnetic field,
which are tangential to the interface I–II, are and . It
is, therefore, sufficient to enforce the boundary conditions of
these two quantities at the interface. Both polarizations (cos
and sin) are analyzed simultaneously.

In Region I, the axial component of the electric field is
expanded in a series of the form

(1)

In Region II, the modal expansion is chosen to satisfy the
boundary conditions at , , and :

(2)

Here, , , and are Bessel and Neumann
functions of order , respectively.

Note that in both regions, we do not impose any specific
boundary conditions at the interface I–II, as this would quan-
tize the wavenumbers in the radial direction and introduce an
additional sum.

The boundary conditions at the interface are

(3a)

(3b)

and

(3c)

At this point, we depart from the standard MMT where the
modal expansions in (1) and (2) are directly used in (3)
and instead introduce an additional degree of freedom in the
problem. Let us assume that the true tangential electric field

at the interface I–II is given by an unknown function .
It is then possible to combine (3a) and (3b) into a single
equation which guarantees that each one of them isalways
satisfied. Indeed, if we require that the function satisfies
the following condition

(4)

and rewrite (3b) in the form

(5a)

(5b)

then the boundary conditions (3a) and (3b) are automatically
satisfied.

To determine the function , the modal expansions in
(1) and (2) are used in (5) to project out the modal coefficients

, , and leading to

(6a)

(6b)

and

(6c)

The following notations were introduced for convenience:

(7a)

(7b)

(7c)

At this point, it only remains to enforce the continuity of
the tangential magnetic field at the interface [i.e., (3c)]. Recall
that in cylindrical coordinates . If the modal
expansion coefficients, as given by (6), are used in (1) and (2),
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which are in turn used in (3c), we obtain an integral equation
for the function , namely

(8)

Note that the integral equation (8) holds only along the
interface I–II [i.e., when ].

This integral equation is solved by the moment method
[6]. To achieve numerical efficiency, we expand the function

in a series of basis functions which contain as much as
possible of thea priori information we have on the behavior
of the tangential electric field at the interface, especially its
nonanalytic nature at the sharp metallic edges of the ridge.
Let denote a generic element of such a set of basis
functions such that

(9)

The number of terms in this expansion, the value of,
is increased until convergence is achieved. It will be seen,
however, that only a few terms are needed to accurately
determine the spectrum of the structure when basis functions
which contain the edge conditions are used.

To determine the constants, we apply Galerkin’s method
to the integral equation (8) with (9). A homogeneous linear
set of equations in the coefficients results, namely

(10)

The entries of the square and symmetric matrix are
given by

(11)

The cutoff wavenumbers are determined as the roots of
the determinant of the matrix or, to avoid the poles which
are usually present in the determinant and, equivalently, as the
zero of its smallest singular value [7]. It is worth emphasizing
the way the modes of the two subregions appear in the theory;
they are used only in computing the inner products which
appear in the matrix elements . These sums are tested
for convergence, leaving only one parameter in the problem,
the number of basis functions , thereby eliminating the
phenomenon of relative convergence.

B. Basic Functions for TM Modes

In order to guarantee numerical efficiency, the basis func-
tions should include the nonanalytic nature of the axial com-
ponent at the sharp metallic edges of the ridge. Since the
internal angle of the metallic edge is equal to , the basis
functions should vanish as as the radial distance from the
edge approaches zero [8]. A set of basis functions which
satisfy this local requirement is given by

(12)

Note that these basis functions are perturbed versions of
the angular field distributions of the modes of an empty
circular waveguide. It is, therefore, expected that the cutoff
wavenumber of a mode which corresponds to a root of
is determined accurately only when the basis function of
order is used. On the other hand, the remaining solutions
corresponding to the higher order roots of are then
satisfactorily determined from the same number of basis
function as the numerical results illustrate.

The spectra of these functions [i.e., the integrals in (7)] can
be expressed in terms of Bessel functions of the first kind of
order 1/6 [9], as shown in (13a)–(13c), at the bottom of the
following page.

When the argument of the Bessel function vanishes, which
occurs when in (13c), the corresponding term should
be replaced by

(13d)

C. Cutoff Wavenumbers of TE Modes

The cutoff wavenumbers of the TE modes can be determined
following an analogous analysis to that of the TM modes.

The axial component of the magnetic field, from which
the transverse components of the electromagnetic fields are
obtained, is expanded in modal series in each of the two
regions. The boundary conditions at the metallic surfaces of
Region II are included in these expansions while no specific
conditions are imposed at the interface I–II:

(14)

and

(15)

The boundary conditions of the TE modes at cutoff correspond
to the vanishing of over the metallic surface of the ridge
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and the continuity of and along the interface I–II, i.e.,

(16a)

(16b)

and

(16c)

To enforce the boundary conditions of the electric field [(16a)
and (16b)], we assume that the tangential electric fieldat
the interface is given by an unknown function which
vanishes over the metallic part of the interface I–II:

(17)

and rewrite (16b) in the form

(18)

Using the expansions of in Regions I and II in (18), we
can express the modal expansion coefficients,, , and
in terms of the spectra of , which are then used in the
continuity of the magnetic field to derive the following
integral equation for :

(19)

Again, this equation holds only when .

To solve this integral equation, we expand the function
in a series of basis functions which satisfy condition (18) along
with the edge conditions. Let denote a generic element of
such a set of basis functions

(20)

Applying Galerkin’s method, we obtain a set of linear equa-
tions in the coefficients :

(21)

where the entries of the matrix are given by

(22)

As in the TM case, the cutoff wavenumbers are determined
as the roots of the determinant of the square and symmetric
matrix . To avoid the poles in the determinant, the zeros of
the smallest singular value of this matrix are located instead
[7].

D. Basis Functions for TE Modes

The basis functions used to expand at the interface
should capture the salient features of this quantity to guarantee
numerical efficiency. Since is normal to the axis of the
90 metallic wedge, it becomes singular as as the radial

(13a)

(13b)

(13c)
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distance to the axis of the wedgeapproaches zero [8]. Taking
into account the fact that there are two wedges located at
and , a set of basis functions which satisfy these
requirements is given by

(23)

The spectra of these basis functions in each of the two regions
can be expressed in terms of Bessel function of the first kind
of order 1/6 [9], as shown in (24a)–(24c), at the bottom of
the page.

Note that the modes of the two subregions are again all
included in the theory, and in a rather simple way; they appear
only in computing the inner products in the quantities .
The phenomenon of relative convergence is eliminated by
testing these sums for convergence, thereby leaving only one
free parameter in the numerical solution, i.e., the number of
basis functions .

This analysis shows how an integral equation for an ill-
behaved quantity (the tangential electric field at the interface)
can be derived and solved. The case where more than one
ridge is present in the structure and where no symmetry is
present requires a set of coupled integral equations instead.
The following sections present an analysis of a double-ridge
structure which is eventually intended for dual-mode filters.

III. A NALYSIS OF ASYMMETRIC DOUBLE-RIDGE WAVEGUIDE

The structure under consideration is shown in Fig. 2. The
metallic walls are assumed lossless, the locations and thick-
nesses of the two ridges arbitrary. For simplicity, the analysis

Fig. 2. Cross section of asymmetric double-ridge circular waveguide and its
subregions for analysis.

is limited to the case where and the depth of the two
ridges are smaller than the radiusof the empty cylinder.
The analysis is straightforwardly adapted to other situations
such as two ridges of equal depths, or one ridge exceeding
the center of the empty cylinder. We first consider the cutoff
wavenumbers of the TM modes.

IV. A CUTOFF WAVENUMBERS OF TM MODES

The cross section of the structure is divided into four
subregions, as shown in Fig. 2. In each of these regions,
the potential of the TM modes are expanded in modal series
which include as much of the boundary conditions as possible.

(24a)

(24b)

(24c)
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However, we do not impose any conditions at the interfaces
between the different adjacent subregions. Taking into account
the fact that is proportional to the potential, we have
modal expansions (25a)–(25d), shown at the bottom of the
page. Here, , , and

.
At cutoff, the only nonvanishing components of the elec-

tromagnetic field which are tangential to the interfaces are
and , which is proportional to .

The boundary conditions of the TM modes are the continuity
of the tangential electric and magnetic fields at the interfaces
and the vanishing of over the metallic portions of these
interfaces, namely

(26a)

(26b)

(26c)

(26d)

(26e)

(26f)

(26g)

and

(26h)

To enforce the boundary conditions of the tangential electric
field at the different interfaces, we introduce three unknown
functions , , and , which are equal to at
the three interfaces I–II, II–III, and II–IV, respectively. We also
require that , , and satisfy the following
conditions:

(27a)

unless (27b)

and

unless (27c)

We now rewrite the boundary conditions (26c)–(26e) in the
following form:

(28a)

(28b)

and

(28c)

It can be easily verified that the boundary conditions of the
tangential electric field are nowall satisfied as long as the
functions , , and satisfy condition (27). To
derive a set of coupled integral equations for these functions,
the modal expansion coefficients in (25) are expressed in terms
of the spectra of these functions in the four subregions and
then substituted in the continuity conditions of the tangential
magnetic field . The algebra is straightforward and leads
to the three coupled integral equations shown in (29), at
the bottom of the following page, which holds when

, shown in (30), at the bottom of the
following page, which holds when , and shown in
(31), at the bottom of the following page, which holds when

.
In these integral equations, the transformed functionsare

defined by (32a)–(32g), shown at the bottom of the following
page.

To solve these three coupled integral equations, we expand
the functions into a series of appropriate basis functions.
Let , , and denote generic elements of the set
of basis functions for , , and , respectively,
such that

(33a)

(33b)

and

(33c)

(25a)

(25b)

(25c)

(25d)
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For simplicity, we take the same number of basis functions
at each interface.

Following the standard moment method, we apply
Galerkin’s method to the integral equations with the
expansions (33) resulting in a linear set of homogeneous
equations in the expansion coefficients, , and as
follows:

(34)

The entries of the matrices appearing in (34) are given in
Appendix A.

The cutoff wavenumbers of the TM modes of the structure
are obtained as the zeros of the determinant of the extended
matrix appearing in (34) or, equivalently, the zeros of its
smallest singular value.

B. Basis Functions for TM Modes

The following set of basis functions which include the edge
conditions at each of the metallic wedges of the two ridges
are used in this paper:

(35)

(29)

(30)

(31)

(32a)

(32b)

(32c)

(32d)

(32e)

(32f)

(32g)
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(36)

(37)

The spectra of these basis functions in each of the subregions
can be expressed in terms of Bessel functions of the first kind
of order 1/6. They are given in Appendix A.

C. Cutoff Wavenumbers of TE Modes

The cutoff wavenumbers of the TE modes are determined
following similar steps to those of Section III-A for the TM
modes. The transverse components of the electromagnetic field
of a TE mode are derivable from the axial component.
In each of the four subregions, is expanded in modal
series which satisfy as much of the boundary conditions as
possible. However, these expansions are not required to satisfy
any specific term-wise boundary conditions at the interfaces.
We, therefore, start from expansions (38a)–(38d), shown at the
bottom of the page. Here,, , and are given by the same
expressions as those of the TM case with the additional term

.
At the cutoff of a TE mode, the only nonvanishing compo-

nents of the electromagnetic field which are tangential to the
interfaces are and , which is proportional to .

The boundary conditions of the problem can be written in
the following form:

(39a)

(39b)

(39c)

(39d)

(39e)

(39f)

(39g)

and

(39h)

Instead of following the MMT and deriving a matrix equa-
tion in the modal expansion coefficients of (38), we introduce
unknown functions which describe the tangential electric field

at the gaps of the interfaces. Let , , and
denote the true distributions of at the interfaces I–II, II–III,
and II–IV, respectively. The function is nonzero only in
the interval whereas is nonzero only when

. To ensure that vanishes on the
metallic portion of interface I–II, we also require that

(40)

The boundary conditions (39) are now rewritten in the fol-
lowing form:

(41a)

and

(41b)

(41c)

It is important to keep in mind that (41) holds only over the
intervals of where the functions are nonzero.

Using the modal expansions of , which are obtained
from (38), we can express the modal expansions in terms
of the spectra of the functions in the four regions. These
expressions are then substituted in the continuity conditions
of to derive the following three coupled integral equations
in the functions , shown in (42)–(44), at the bottom
of the following page. Equations (42)–(44) hold over the
same ranges of as (29)–(31), respectively. The transformed
functions are defined by (45a)–(45g), shown at the bottom
of the following page. The functions are expanded in series
of basis functions which include the edge conditions at the four
wedges of the two ridges. Let , , and denote elements
of these sets of basis functions such that

(46a)

(38a)

(38b)

(38c)

(38d)
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(46b)

(46c)

Applying Galerkin’s method to the integral equations
(42)–(44) with (46), we obtain a set of linear homogeneous
equations in the expansion coefficients, , and as follows:

(47)

The entries of the matrices appearing in this equation are given
in Appendix B.

D. Basis Functions for TE Modes

The basis functions should include whatever information
we have about the behavior of the functions they are used to
represent, especially the nonanalytic or singular properties. In
this case, is singular as as the radial distance to
the axis of the metallic wedge approaches zero [8]. Taking
into account the presence of the two wedges, we propose the
following set:

(48)

The inclusion of the proper edge conditions in the basis
functions in Regions III and IV are achieved through a
mirroring process. Indeed, by forcing the basis functions to be
even with respect to the metallic surfaces located at
and , we are guaranteed that the edge conditions

(42)

(43)

(44)

(45a)

(45b)

(45c)

(45d)

(45e)

(45f)

(45g)
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Fig. 3. Cutoff wavenumbers of the first TE modes of a single-ridge circular waveguide. The circles are from [1].

at these surfaces are accounted for. The edge conditions at the
metallic wedges at and are straightforwardly
included through the weighting function. We finally have the
following basis functions:

(49)

(50)

Taking into account the ranges of these basis functions, it can
be easily verified that they include the proper edge conditions
at all the metallic walls and edges. The spectra of these basis
functions are given in Appendix B.

V. NUMERICAL RESULTS AND DISCUSSION

The present technique is first applied to the case of a
single-ridge circular waveguide.

To validate the theory and the computer code, the cut-
off wavenumbers of the first two modes which correspond
to the unperturbed fundamental mode of an empty circular
waveguide were computed using the present technique
and are shown in Fig. 3. The circles are from [1] for the
same dimensions of the structure. Good agreement between
the two results is observed. Two basis functions were used in
generating the data. The inner products which appear in the
matrix elements in (22) reach convergence with 30 terms in
the sums.

Cutoff wavelengths of higher order modes were also inves-
tigated for a number of dimensions of the ridge. Table I(a) and

TABLE I
CUTOFF WAVELENGTH �c=2a OF THE FIRST FEW MODES OF ASINGLE RIDGE FOR

b=a = 0:9 AND � = 0:02 rad AS OBTAINED FROM THE CIET AND THE MMT

(a)

(b)

(b) summarizes the results for cutoff wavelengths of the first
few higher order modes along with the results obtained from
the MMT [3]. Good agreement is again observed between the
two sets of results.

The convergence of the numerical solution as the number
of basis functions is increased is shown in Table II(a) and (b).
It can be clearly seen that once enough basis functions are
used for a cutoff to be encountered, the numerical solution
converges rapidly, thereby confirming the judicious choice of
the basis functions. The reason for the absence of some roots
when the number of basis functions is not large enough, is
due to the angular distribution of the fields of the modes and
the nature of the chosen basis functions which are perturbed
versions, through the edge conditions, of the modal fields
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TABLE II
CONVERGENCE OFCUTOFFS (kca) OF THE FIRST

FEW TM MODES OF A SINGLE-RIDGE VERSUS THE

NUMBER OF BASIS FUNCTIONS. b=a = 0:5, � = 2:5�

(a)

(b)

TABLE III
CUTOFF WAVENUMBERS (kca) OF THE FIRST EIGHT TM MODES OF

AN ASYMMETRIC DOUBLE-RIDGE STRUCTURE FORDIFFERENT

VALUES OF b=a AND d=a. r = t = 2:5� AND 2s = 130
�

(a)

(b)

of the empty waveguide. It was noticed that a mode is
encountered once a basis function with the proper angular
distribution is used. For example, one or two basis functions
are sufficient to determine the cutoff wavenumbers of the
perturbed modes corresponding to the roots of or

. In addition, it is important to note that we analyzed
both symmetries in one step which effectively reduces the
number of contributing basis functions to a mode of a given
symmetry. Had we taken advantage of the symmetry of the
structure, the convergence of the solution would have been
much faster. However, the fact that the technique recognizes
the presence of the symmetry in the structure provides an
additional confirmation of its validity.

The second structure investigated using the CIET consists
of two asymmetric ridges in a circular waveguide (see Fig. 2).

TABLE IV
CONVERGENCE OFCUTOFFS OFTM MODESWITH kca � 6 VERSUS THENUMBER

OF BASIS FUNCTIONS. b=a = 0:5, d=a = 0:5, r = t = 2:5� AND 2s = 130
�

(a)

(b)

Tables III(a) and (b) summarize the results obtained using
this present technique for two different sets of dimensions of
the two ridges. For small ridges, our results reduce to those
of the corresponding empty circular waveguide. These results
were obtained using eight basis functions at each interface and
30 terms in the inner products.

The convergence of the numerical solution of the cutoff
wavenumbers of the first few TM modes (i.e., those whose
cutoff wavenumbers are such that ) is shown in
Table IV(a). It is evident that even for this asymmetric struc-
ture, the CIET converges rapidly once enough basis functions
for a root to be encountered are used. The convergence of the
TE modes with is shown in Table IV(b).

We also report that spurious roots were encountered in the
numerical solution for the TE modes in both the single- and
double-ridge structures. These roots were always eliminated
when a large enough number of basis functions were used.
For example, if the presence of a root is suspicious, adding
one or two more basis functions leads to its removal if it is
indeed a spurious root.

VI. CONCLUSIONS

The CIET was successfully applied to determine the cutoff
wavenumbers of single- and double-ridge circular waveguide.
The inclusion of the edge conditions in the basis functions
at each of the sharp metallic wedges of the ridges makes the
approach numerically efficient, as shown by the convergence
study. The approach allows the inclusion of the singular
behavior of the electromagnetic field at more than one ridge
from the outset. The modes of the subregions are also all
included in the theory by testing the sums in the inner products
for convergence. The technique handles both symmetries in
one step and is easily applicable to situations where more
than two ridges are present.
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(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)
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(A.14)

(A.15)

(A.16)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)
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(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

APPENDIX A

In this appendix, we give the expressions of the transformed
basis functions for TM modes as well as the entries of the
matrices in (34). The transformations of the basis functions as
defined by (32) are expressed in terms of Bessel functions of
the first kind of order 1/6 [9] [ ], shown in
(A.1)–(A.7), at the top of page 490. The entries of the matrices
in (34) follow from taking the dot products of the integral
equations (29)–(31) against the basis functions (A.8)–(A.13),
shown at the bottom of page 490, and (A.14)–(A.16), shown
at the top of the previous page.

APPENDIX B

In this appendix, we give the expressions of the transformed
basis functions for TE modes as well as the entries of the
matrices in (47). The transformations of the basis functions as
defined by (45) are expressed in terms of Bessel functions of
the first kind of order 1/6 [9] [ ], shown in
(B.1)–(B.7), at the bottom of the previous page. The entries
of the matrices in (47) follow from taking the dot products

of the integral equations (42)–(44) against the basis functions
(B.8)–(B.16), shown at the top of the page.
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