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Fig. 3. Normalized local reflections for theEz -field component of the wave
(� = �=6) along the line (X, 11, 20.5), where Curve 1:N = 10, m = 2,
Curve 2:N = 15, m = 2, Curve 3:N = 10, m = 3, Curve 4:N = 15,
m = 3, Curve 5:N = 10, m = 4, and Curve 6:N = 15, m = 4.

absorber. Noting that whenN = 15, the total computational domain
is simultaneously changed to 50� 50� 51, and theX-axis of Fig. 3
is given according to the caseN = 10. It can be seen from Fig. 3
that by adjusting the parameters used in the GMIPML absorber,
better absorbing performance can be achieved.

IV. CONCLUSIONS

By introducing the material-independent quantitiesD and B
into the FDTD model, a GMIPML absorber aimed for absorbing
electromagnetic waves propagating in 3-D arbitrary anisotropic media
consisting of both permittivity and permeability tensors is developed.
In contrast with the previous PML absorbers, the conductivities�

D

and�B , instead of�E and�H , are used. The main reason of using
�
D and �B in the proposed absorber is due to the fact that these

conductivities are independent of the anisotropy of the material.
As a consequence, Berenger’s PML can be simply and effectively
extended to 3-D arbitrary anisotropic materials. Furthermore, due to
the special feature (i.e., the material independence) of the proposed
GMIPML absorber, it can also be used to absorb electromagnetic
waves propagating in materials consisting of loss, dispersion, and
nonlinearity [14] with slight modifications. Furthermore, unsplit-field
formulations (i.e., without splitting theD and B fields) of the
GMIPML absorber have been recently proposed [15] by the author.
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Accurate Analysis of Periodic Structures with an
Additional Symmetry in the Unit Cell

from Classical Matrix Eigenvalues

Smain Amari, R̈udiger Vahldieck, and Jens Bornemann

Abstract—Dispersion diagrams of periodic structures with an additional
symmetry in the unit cell are investigated by the example of a parallel-
plate waveguide loaded with irises of zero thickness. The propagation
constants of the Floquet modes are determined from theclassicaleigen-
values of a non-Hermitian matrix.

Index Terms—Eigenfunctions, eigenvalues, integral equations, periodic
structures.

I. INTRODUCTION

The growing interest in photonic bandgap (PBG) materials has
created a demand for efficient methods of analysis of periodic
structures [1]. Periodic structures have been the subject of numerous
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Switzerland.

J. Bornemann is with the Department of Electrical and Computer Engineer-
ing, University of Victoria, Victoria, B.C., Canada V8W 3P6.

Publisher Item Identifier S 0018-9480(98)07231-7.

0018–9480/98$10.00 1998 IEEE



1514 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 10, OCTOBER 1998

Fig. 1. Side view of a parallel-plate waveguide with glide reflection sym-
metry.

investigations due to their importance in slow-wave structures and
corrugated antennas [2], [3]. The effect of periodicity on the propa-
gation properties is commonly taken into account through expansions
in space harmonics [2].

The present approach is based on the coupled-integral-equation
technique (CIET), which was recently proposed in [4]. Although
isolated discontinuities, mainly of vanishing thickness, are well
treated in classical texts of waveguide theory, e.g. [5], it is the
combination of multiple discontinuities that reveals the advantages
of this technique over classical approaches.

In this paper, a structure with glide reflection symmetry was
purposely chosen to show how additional symmetries in the unit
cell of a periodic structure can be straightforwardly included in
the approach. A similar structure was investigated by Hessel and
Oliner using coupled-mode theory where the propagation constant is
determined from a determinant equation [6]. Here, the propagation
constants are determined from theclassicaleigenvalues of a square
non-Hermitian matrix instead of a determinant.

II. THEORY

The cross section of a periodic structure with glide reflection
symmetry is shown in Fig. 1. The period isd. The structure is
invariant under a translation byd=2 along thez-axis followed by a
reflectionx! �x. It can be shown that the modes of this structure
can be divided into two groups whose elements are eigenfunction of
a glide reflection operatorG with eigenvaluesg1 andg2 such that

g1 = e��(d=2) g2 = �e��(d=2) (1)

the details of which may be found in [6]. In the following, the modes
themselves will be referred to asg1 andg2 for simplicity. We limit
the analysis to TM modes with noy-dependence.

The transverse components of the electromagnetic fields in regions
I and II can be expanded in series of modes of the uniform sections.
Since the structure is not invariant under a reflectionx! �x, both
even and odd modes of the uniform parallel-plate waveguide are
needed. Let�em(x) and�om(x) denote the normalized even and odd
modes of the empty parallel-plate waveguide with noy-dependence.
The wave admittance and propagation constants are denoted byY e

m,
Y o
m, kezm, and kozm, respectively.
Let us assume that the exact distributions ofEx atz = 0, z = d=2,

andz = d are given by the three unknown functions:X1(x), X2(x),
and X3(x).

The Floquet condition leads to the relationship

X3(x) = e��dX1(x): (2)

In the present case, the glide reflection symmetry leads to the
additional relation (for modeg1)

X2(x) = e��d=2X1(�x): (3)

Therefore, we are left with only one unknown function, namely
X1(x).

Following the CIET [4], we derive an integral equation for the
function X1(x), which is then solved by the moment method. To
this end,X1(x) is expanded in a series of the form

X1(x) =

M

i=1

ciBi(x) =
i=1

ci[B
e
i (x) +Bo

i (x)]: (4)

Here,Be
i (x) andBo

i (x) are the even and odd parts of theith basis
function. It is not efficient to apply Galerkin’s method in this case
since the basis functions are used to expand the electric field atz = 0,
whereas the integral equation is obtained from the continuity of the
magnetic field atz = d=2. We need to project the integral equation
over a function in the range ofHy at z = d=2. We thus use the
testing functions

Ti(x) = Be
i (x)�Bo

i (x): (5)

The propagation constants� are then determined from the following
matrix eigenvalue problem:

[K][c] = cosh(�d=2)[L][c]: (6)

The entries of the matrices[K] and [L] are given by

[K]ij =

1

n=1

Y e
n

~Be
i (n) ~B

e
j (n)

tan(keznd=2)
+

1

n=1

Y o
n

~Bo
i (n) ~B

o
j (n)

tan(koznd=2)
(7)

[L]ij =

1

n=1

Y e
n

~Be
i (n) ~B

e
j (n)

sin(keznd=2)
�

1

n=1

Y o
n

~Bo
i (n) ~B

o
j (n)

sin(koznd=2)
(8)

where

~Bp(n) =
t�h

�t

�pn(x)X(x) dx; p = e; o: (9)

Although the matrices[K] and[L] are both real and symmetric, they
do not necessarily commute. The product[L]�1[K] is not symmetric
and, therefore, the eigenvalues are, in general, complex.

The eigenvalue matrix equation forg2 is obtained from (6) by
changing the sign of the matrix[L].

A major advantage of the present formulation lies in the fact
that the propagation constants are determined from theclassical
eigenvalues of a matrix. The dispersion relation of many modes,
including complex and evanescent modes, can be easily computed.

III. N UMERICAL RESULTS

To guarantee efficiency in the numerical solution, edge-conditioned
basis functions are used. The dispersion diagram for the two eigen-
modes of the glide reflection operatorG were determined in the
interval [�2�; 2�].

Fig. 2 shows the first few branches of the dispersion diagram
obtained from the present technique with three basis functions. The
presence of a bandgap in the diagram is typical of periodic structures.

The fact that the individual dispersion curves of the two modesg1
andg2 are not invariant under a translation� ! �+(2�=d) is clearly
visible in Fig. 2. However, the overall dispersion diagram is indeed
periodic with a period2�. It is also evident that the dispersion curves
of the two modes are interchanged under the same translation. This
property was used by Hessel and Oliner to investigate the periodicity
of a periodic structure with glide reflection symmetry [6].
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Fig. 2. k0�� diagram of the first few Floquet modes. Modeg1 (solid line)
and modeg2 (dashed line).h = 1:5 cm, t = 2 cm, andd = 0:5cm.

Fig. 3. Overallk0�� diagram showing the periodicity to be2�. These are
the same dimensions as in Fig. 2.

The important fact that the periodicity of the overall dispersion
diagram is2� is better illustrated in Fig. 3 for the same dimensions
as in Fig. 2. Note that Fig. 3 can be obtained from a direct analysis
in which the glide reflection symmetry is not taken into account.

Although most investigations of periodic structures focus on the
propagating modes, the present approach allows us to rapidly and
accurately determine the attenuated and complex modes as well.
Fig. 4 shows a plot of the real and imaginary parts of� versus
normalized frequency for the same dimensions as in Fig. 2. Higher
order complex modes were also found, but are not reported here.
An interesting feature of the complex modes is the presence of
propagation constants of the form�d = �d + j2� (straight upper
thick line). This is in contrast to similar modes in periodically
loaded transmission lines, where propagation constants of the form
�d = �d + j� (� instead of2�) are also present [7, p. 367].

IV. CONCLUSIONS

Propagation properties of a periodic structure with a symmetry
in the unit cell were analyzed by the example of a structure with
reflection symmetry using the CIET. The propagation constants

Fig. 4. Imaginary and real parts of� as a function of frequency(k0h). The
thick lines indicate complex modes. These are the same dimensions as in
Fig. 2.

are determined from theclassical eigenvalues of a non-Hermitian
generalized matrix eigenvalue problem.
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