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ABSTRACT: A new, simple, and efficient technique for the accurate
calculation of the one-dimensional generalized exponential integral is
presented. The method is ¨ery robust, suitable for e¨en ultra-thin wire
antennas, which are of great interest for communications with sub-
mersible ¨ehicles, for example. Q 1998 John Wiley & Sons, Inc.
Microwave Opt Technol Lett 19: 255]257, 1998.
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I. INTRODUCTION

The generalized exponential integral is one of the most
elementary integrals in applied electromagnetics. Accurate
calculation of the integral is essential in, e.g., the examination
of radiating properties of various structures by the method of
moments.

The one-dimensional form of the generalized exponential
integral is well known from the calculation of mutual and
self-impedances in wire antennas. The problem of calculating
the self-impedance of a wire element of length 2 z and1
radius a translates numerically to the evaluation of the

integral

2 2'yjk z qaez1 Ž .I s dz. 1H1 2 2'yz z q a1

Note that while I does not exist in the case of an infinitesi-1
Ž .mally thin wire a s 0 , the two-dimensional variety of the

w xintegral does exist} and can be calculated exactly 1 }even
for a equaled to zero, which physically corresponds to inte-
grating the electric field over the surface of a planar radiator.

Exact solutions to the integral, especially for the wires
that are electrically thin, have long eluded antenna engineers
and researchers. Although a multitude of techniques for the
evaluation of I can be found in the literature, most of them1
make certain convenient but restrictive assumptions which
limit the application range of the techniques. Recently, sev-
eral procedures that are general and free of the customary
restrictions have appeared. Of particular importance is the

w xtechnique of 2 , which is shown to be stable for an arl as
small as 10y19.

This paper introduces a new and exact, yet simple, method
for the evaluation of the one-dimensional generalized expo-

Ž y30.nential integral, suitable for even ultra-thin arl f 10
wire antennas. A decomposition of the integral’s kernel is
used to avoid the usual numerical problems encountered
when the integral is computed directly. The high efficiency of
the method will be demonstrated, and comparison with

w xbenchmark results as well as those of 2 will be presented.

II. INTEGRAL CALCULATION

We split the integral I into real and imaginary parts. The1
imaginary part presents no numerical problems, and there-
fore can be evaluated directly as is. The real part is more
difficult to tackle because of the singularity that emerges
when a s 0 and z s 0.

In order to also accurately calculate the real part of I ,1
the kernel of the integral is decomposed into two parts:

2 2' Ž .cos k z q a y cos kaz ž /1w x Ž .Re I s 2 dz q 2 cos kaH1 2 2'0 z q a

dzz1 Ž .? . 2H
2 2'0 z q a

Ž .The first integrand in 2 is a much better behaving function
than that of the real part expressed as a single component.
ŽActually, the first integrand is not singular anymore, as a

.limit, even when a ª 0. The singularity has been isolated
and is contained in the second integral, which we evaluate
analytically:

dz zz1 1 Ž .s ar sinh . 3H ž /2 2 a'0 z q a

Employing the identity

2'Ž . Ž .ar sinh x ' ln x q x q 1 , 4ž /
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the overall expression for I as a result is1

2 2' Ž .cos k z q a y cos kaz ž /1 Ž .I s 2 dz q cos kaH1 2 2'0 z q a

2z z1 1
?ln q q 1(ž /ž /a a

2 2'sin k z q az ž /1 Ž .y j2 dz. 5H
2 2'0 z q a

The above equation corresponds to the integration passing
w Ž .xthrough the origin, point z s 0 cf. 1 . When integration

from an arbitrary z to an arbitrary z is required, I be-1 2 1
comes

2 2'yjk z qaez2 Ž .I s dz. 6H2 2 2'z z q a1

It is transparent that our integration technique is also directly
applicable to this integral; a straightforward manipulation
yields

2 2' Ž .cos k z q a y cos kaz ž /2 Ž .I s dz q cos kaH2 2 2'z z q a1

2z z2 2q q 1(ž /a a
? ln

2z z1 1q q 1(ž /a a

2 2'sin k z q az ž /2 Ž .y j dz. 7H
2 2'z z q a1

If the Gauss]Legendre quadrature is employed to per-
Ž . Ž .form the integrations in 5 and 7 , respectively, only a few

integration points are needed in order to obtain accurate
results, as will be demonstrated in the following section.

III. NUMERICAL RESULTS

In the first application, the above-described integration tech-
nique was implemented in a method-of-moments code com-
puting the input admittance of a center-fed straight-wire

Žantenna length-to-diameter ratio of 74.2, impedance-matrix

.order of 33 as a function of frequency. Agreement within the
plotting accuracy with the results presented by Harrington in
w x3 was observed.

Comparison computations with the half-wave, thin-wire
w xresults of 2 using the Harrington formulation were per-

w x y19formed. The data, as in 2 , ranging from arl s 10 to
10y4 and calculated for 63 wire segments, were reproduced
within the plotting accuracy of the above. A few of the values
are presented compared one-on-one in Table 1.

To test the numerical stability of our technique, we have
lowered the number of wire segments as well as further
reduced the thickness of the analyzed wire. The computed
data are shown in Table 2. When the order of the impedance

Žmatrix i.e., the number of wire elements that the antenna is
.segmented into is gradually reduced from 63 to 33, the real

part of the calculated input impedance changes by less than
0.6% and the imaginary part by 3.6%.

No more than three integration points in the integrals of
Ž . Ž .5 and 7 , respectively, were needed to obtain all of the
presented results. Higher counts of integration points re-
sulted in numbers that agreed in seven significant values with
the data produced by integrating in merely three points.

IV. CONCLUSIONS

A novel technique is introduced to accurately calculate the
one-dimensional generalized exponential integral. The
method is completely general and free of any restrictions on
its application. A decomposition of the integral’s kernel into
two parts, one of which is evaluated analytically and the other
numerically, is employed. Since the remaining integrand ob-
tained this way is a much smoother function than that when
the integral is expressed by a single term, only very few
integration points are needed to perform the integration
exactly, rendering the procedure highly efficient. In addition,
the technique is suitable for the analysis of ultra-thin wire

Žantennas with the radius-to-wavelength ratio as small as
y30 .10 , possibly even smaller . Due to the simplicity of the

technique, minimal effort is needed for the implementation.

TABLE 1 Performance Comparison of Our Technique and
[ ]That of 2 for a Center-Fed Half-Wave Dipole and Various

( )Values of Wire Radius a Harrington’s Formula

w xZ Vin

Ž . w xlog arl Procedure of 2 Our Technique

y4 79.83 q j43.35 79.857 q j43.391
y9 75.23 q j42.07 75.217 q j42.104

y14 74.37 q j41.80 74.344 q j41.815
y19 73.98 q j41.66 73.974 q j41.668

TABLE 2 Convergence Performance, in Terms of Input Impedance of a Center-Fed Half-Wave Dipole for Various Values of Wire
Radius a, of Our Technique

w xZ V forinNo. of Wire
Ž . Ž . Ž . Ž .Segments log arl s y4 log arl s y10 log arl s y20 log arl s y30

63 79.857 74.959 73.924 73.618
qj43.391 qj42.023 qj41.645 qj41.477

53 79.758 74.880 73.899 73.596
qj43.020 qj41.378 qj41.283 qj41.040

43 79.621 74.926 73.865 73.565
qj42.534 qj41.721 qj40.948 qj40.693

33 79.406 74.799 73.803 73.508
qj41.825 qj40.900 qj40.549 qj40.345
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Excellent agreement with benchmark results and stability of
the technique are demonstrated.
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ABSTRACT: Adjusting the slot width in a slot antenna can determine
the operating frequency bandwidth. In order to obtain a wider radiation
beamwidth, a narrower slot width is needed. This paper uses a CPW
tuning stub in the CPW-fed slot antenna to achië e this goal. Q 1998
John Wiley & Sons, Inc. Microwave Opt Technol Lett 19: 257]258,
1998.

Key words: coplanar wa¨eguide-fed slot antenna; tuning stub length

1. INTRODUCTION

A uniplanar CPW-fed active slot antenna has been reported
w x1 and has many applications. Some characteristics of a slow

w xantenna on multilayer dielectric substrates 2, 3 have also
been discussed, which have a wider bandwidth than a patch
antenna. In this paper, we report more characteristics of a
slot antenna with a single layer substrate. The widest band-
width can be adjusted by changing the slot width. For obtain-
ing a wider 3 dB radiation beamwidth, a narrower slot width

is chosen, and tuning stub loading after the antenna must be
used. The tuning stub changes the reactance of the slot
antenna, which has been used in a microstrip-slot-fed patch

w xantenna 4 for tuning the imaginary part of the input
impedance. This paper discusses the difference in radiation
pattern beamwidth, resonant frequency, and bandwidth using
different loading stub lengths. Experimental results show that
the tuning stub length is an important factor affecting the
resonant frequency and bandwidth.

2. EXPERIMENTAL RESULTS

Figure 1 shows the geometry of a CPW-fed slot antenna with
tuning length stub loading. The two slots are of the same size,

Ž .and are printed on a substrate of thickness h 1.6 mm and
Ž . Ž .relative permittivity e 4.2. The slot length L determinesr

Ž .the resonant length, while the slot has a width G which may
be adjusted to achieve a wider bandwidth. The optimal value
of G is found as 7 mm. Resonant frequency occurs at about
2.33 GHz, and the bandwidth is 19.3% with VSWR - 2.
Figure 2 shows the return loss of various slot widths with
tuning lengths resulting in different resonant frequencies. As
the slot width gets narrower, the tuning length needs to be
longer, the resonant frequency decreases, and the antenna
bandwidth gets narrower. At G s 5 mm, t s 10 mm, a reso-
nant frequency of 2.1 GHz appears with 12.8% bandwidth.

Figure 2 Return loss versus frequency for various slot widths and
tuning lengths: h s 1.6 mm, e s 4.2, s s 0.5 mm, w s 3.8 mm, andr
L s 41.5 mm

Figure 1 Geometry of slot antenna with coplanar waveguide tuning stub loading
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