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Abstract: A technique is presented for the
analysis of propagation in a circular waveguide
periodically loaded with irises of finite thickness.
The propagation constants of the Floquet modes
are determined from the classical eigenvalues of a
characteristic matrix instead of a nonlinear
determinant equation. Numerical results are
presented for the TE,, modes and compared with
available  data.  Excellent agreement is
documented.

1 Introduction

Corrugated waveguides have been extensively investi-
gated for applications in radar and microwave commu-
nication systems, linear accelerators and slow-wave
devices. Antenna feed systems often include corruga-
tions to achieve high degrees of isotropy in the radia-
tion pattern and low cross-polarisation {1].

Corrugated circular waveguides have been investi-
gated using a number of techniques [1]. Expansions of
the components of the electromagnetic field in space
harmonics have been extensively used in investigating
propagation properties of periodically loaded
waveguides [2]. In the surface-impedance approach, it
1s assumed that only the TM,, mode is present in the
slot where no propagation occurs [1-4]. The surface-
impedance approach provides accurate results for the
propagation constant of the modes when the corruga-
tions are densely packed. In addition, the thickness of
the irises is often neglected to simplify the analysis [5].

The use of space harmonics to expand the compo-
nents of the electromagnetic field introduces an addi-
tional sum due to the quantisation in the direction of
propagation [1]. The resulting double sums are trun-
cated in the actual numerical solution, leading to a
homogeneous matrix equation in the expansion coeffi-
cients. The propagation constants of the Floquet
modes are determined by solving a nonlinear determi-
nant equation following an iterative process. Such an
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approach can be time-consuming when a large number
of modes are required.

The modified residue calculus technique has also
been wused in investigating periodically loaded
waveguides [6]. The method is, however, applicable
only for certain modal configurations [7]. The propaga-
tion properties of a rectangular waveguide periodically
loaded with zero-thickness capacitive irises have been
investigated with the mode-matching technique (MMT)
[8]. The periodicity condition of the Floquet modes was
imposed on the modal expansion coefficients, along
with the boundary conditions at the interface between
two adjacent unit cells, to derive an eigenvalue equa-
tion for the propagation constant. Here we improve on
the analysis of Collin [8] by including the edge condi-
tion and, most importantly, taking into account the
finite thickness of the irises.

The formulation used in this paper is based on the
coupled-integral-equation technique [9]. Although
eigenvalue problems in planar transmission lines with a
thick metallic coating have also been formulated in
terms of the aperture electric fields [10, 11], resulting in
a nonlinear determinant equation [[10], eqn. 24] for the
propagation constant, here we are interested in deter-
mining the propagation constants from the classical
eigenvalues of a matrix instead of a determinant. This
is achieved by not including the propagation constants
in the modes used to expand the fields in the different
regions; the propagation constant of a generic Floquet
mode is included as a priori information in the integral
equation instead. Finally, the edge condition is
included by introducing a weighting factor as in the
discussion of Kitazawa et al. [10].

In this paper, we limit the analysis to TE,, modes in
order to not cloud the main ideas in the mathematical
formulation. The extension to other modes poses no
serious difficulty, although the algebra is more cumber-
some.

Fig.1 Cross-section and side view of corrugated circular waveguide

2 Theory

We focus on the structure shown in Fig. 1. It consists
of a circular waveguide of radius «a, periodically loaded
with irises of thickness d and inner radius . The period
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of the structure is p. Owing to the periodicity of the
structure, it is sufficient to analyse only one unit cell.
The connection between adjacent cells is provided by
the Floquet condition, which we write in the form [8]

flz+p)=ef(2), Vz (1)
Here f(z) is a generic component of the electromagnetic
field and @ is the propagation constant of the mode.
The unit cell is subdivided into two distinct regions,
as shown in Fig. 1. Let the transverse electric field at z
=0, z = d and z = p be denoted by X;(x), X5(x) and
X;5(x), respectively. The Floquet condition is included
in the theory from the outset by requiring the following
relation

X3(z) = e X, () (2)

Following our previous approach [9], we derive two
coupled integral equations for the two remaining func-
tions X;(x) and X3(x). Starting from the modal expan-
sions of E, in both regions, the modal expansion
coefficients are eliminated in favour of the functions X;
and X,. Enforcing the continuity of H, at z = d and its
periodicity at z = p, we obtain two coupled integral
equations:

> Xi(n) cos(ki1S)—e 0r X1
ZYTL”%{I 3'(n) cos(k;,S)—e i'(n) ha <xn1£)

opuet sin(kILS)
= X!(n) — cos(kl, d)Xi(n) o
— YI 11 2n 2 P
; n dn sin(kL, d) N (xnl b)
0<p<b (3)
and
= X (n)e —cos(kILS) X1 (n) p
YII 11*2 zn 1 s
; n In sin(ki1S) N (m ! a)

> X[ (n)cos(k! d) — XI(n) p

— YI I“*1 zn 2 =
; nIn sin(k!_d) . <w ! b)
0<p<b (4

Here J; is the Bessel function of order one and x,, is its
root of order n. The modal propagation constants are
given by

Kl = kg—(fgi)z, ko = w+/Tioco
N ) %)

The wave admittances are related to the modal propa-
gation constants through Y, = ki ,/an, where o is
the angular frequency.

The spectra of the functions X;(x) and X,(x) over the
modes of the two regions are defined by

XIn) =gl / ’ pdoXi(p) () ©®
XM (n) =glt /(;bpdei(p)Jl (xnlg) (7)

The normalisation constants g,/ and g,” are given by

I V2

= G ®
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S e ©
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To solve the integral equations, the functions X;(x) and
X5(x) are expanded in series of basis functions of the
form

Xi(z) = wiBi() (10)
=1
M

Xo(z) = sz‘Bi(l‘) (11)

The same set of basis functions is used at both discon-
tinuities since they have identical geometries. Applying
Galerkin’s method [12], we obtain two sets of matrix
equations in [u] and [v]:

A Clfu De= % 0 u
& SB[ o] [2] =0 02
where 6 is the unkown propagation constant. The

entries of the matrices in eqn. 12 are given by
=, Bl(m)B](n)

R IT—e 777
Ay = ;Y" sin(kl, d) (13)
> ouBlmBlIn) X Bl(n)Bl(n)
= - Yy [t A
C ; Ya tan(kI1S) ngl * tan(kl d)
(14)

and
by = Sy BBl
iy — P
=" sin(kLS)
Eqn. 12 is not in a convenient form because of the
appearance of two different functions of 6, i.e. ¢ and
e . A direct solution requires finding the roots of a
nonlinear determinant equation; an approach we want
to avoid. We first eliminate the vector [v] to obtain a
reduced equation in terms of [u] only, or

[R][u] + [U][u]e®” + [U]*[ue =" = 0 (16)
The matrices in eqn. 16 are given by
[R]=AC'A+DC™'D-C (17)
and
[Ul=AC™'D, [U]'=DC'A (18)

Let A = €% and note that e = 1/A. We then have the
following eigenvalue problem:

(U] [RIA[u] + A*[u] + [U] [U)[u] =0 (19)

Let us introduce a vector [w] of the same dimension as
[u] such that

(W] = Alu] (20)

The eigenvalue equation can finally be rewritten in the
more convenient form

Pl

Here I is the identity matrix of order M x M. Eqn. 21
shows explicitly that the propagation constants of the
Floquet modes are determined from the classical
eigenvalues of a real matrix. The large repertoire of
commercial software packages can be used to solve it.
To complete the numerical solution, appropriate
basis functions are needed. As an iris of finite thickness
has a metallic wedge of internal angle 90°, at whose
vicinity the tangential electric field vanishes as r¥> when
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r — 0 [8], we use the following basis functions obtained
using a weighting factor similar to that of Kitazawa et
al. [10]:

Ji (1711 lg‘)

i(ﬂ):W, 1=1,2,... (22)

The spectra of these basis functions over the modes of
the two sections of the waveguide are computed numer-
ically.

Note that the case of zero-thickness irises is best
solved directly instead of from taking the limit d — 0.
Since the discussion is similar to the analysis above, it
is not presented here. There are, however, multiple
reflections taking place between the faces of the irises;
the ky — B diagram (Fig. 4) is more complex for thick
irises.

3 Numerical results and discussion

To validate the approach and the computer code, we
computed the propagation constants of the first few
TEy, modes for the structure analysed by Clarricoats
and Olver [1] when b/a = 0.8. Only the propagating
modes with 6 = jf are shown here. Since the value of
the period is unfortunately not given by Clarricoats
and Olver, we found that their results for TE, and
TEy, [[1], Figure 3.3, p. 26], agree very well with our
results when the period is p = a/5 within the zero-thick-
ness approximation. A computer code was written to
solve the zero-thickness approximation directly and is
available to interested readers.
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Fig.2 Propagation constant of first three TE,, modes as a function o
koogbtained from three basis functions when a = 19.5mm, p = /5 and b/a

our approach
o Clarricoats and Olver’s approach [1]

Fig. 2 shows a plot of the propagation constant b
as a function of kyb. The agreement is excellent within
the readability of the quoted results. These results were
obtained using three basis functions, and the sums in
the entries of the matrices needed 30 terms to reach
convergence. The additional mode which starts at kyb
= 9.8 was not reported previously [1].

The first branch of the TE; mode was also deter-
mined when the thickness of the irises is non-zero.
Fig. 3 shows the results obtained from the present
approach with three basis functions for the same
dimensions as reported by Davies and Goldsmith [13].
The experimental results [13] are in excellent agreement
with our computed results.

We also carried out numerical experiments in the
limits d — p and b — a and obtained excellent agree-
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ment between the numerical results and the limiting
analytical results.
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Fig.3 Dispersion curve of TE, mode obtained from three basis func-
tions when 2a = 7.9423cm, p = 2cm, 2b = 7.112cm’and d = 0.2449cm

o experimental results [8].
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Fig.4 K, - B obtained from three basis functions when a = 19.5mm,
p=ab=alandd=al0(
(-~ — -) dispersion diagram of Fig. 5 for same dimensions
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Fig.5 ‘Equivalent’ of Fig. 1 where each thick iris is replaced with two
irises of zero~thickness

Fig. 4 shows the entire ky — f diagram when p = a, b
= a/2 and d = a/10. The solid lines represent the
dispersion diagram of the structure with thick irises. To
show the effect of multiple reflections, reflections
between the two sides of the corrugations at z = 0 and
z = d, we also plotted the diagram of a structure where
each thick iris is replaced with two infinitely thin irises
separated by a distance d (dashed lines) (Fig. 5). The
agreement between the two diagrams clearly suggests
that the physics of the problem is dominated by the
discontinuities at the faces of the iris. The basis
functions for the zero-thickness approximation were
obtained using a weighting factor similar to the basis
functions used by Kitazawa er al. [10], but with Bessel
functions replacing the polynomials. The data for
Fig. 4 were calculated using three basis functions and
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30 terms in the sums appearing in entries of the
matrices in eqns. 13-15. The presence of the band-gaps
in the ky — B diagram is evident. Note that other modes
may be present in the frequency range where the TEy,
modes are not propagating. A much more exhaustive
investigation of the spectrum of a corrugated circular
waveguide has been carried out by Clarricoats and
Olver [1].
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Fig.6  Structure where each thick iris is replaced with an iris of zero
thickness
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Fig.8 k, - B diagram of Fig. 1 ( ), Fig. 5 (— ——) and Fig. 6
(—+—) whena=19.5mm, p = a, b = 0.5a an dd a/

The three structures are practically equivalent for these dimensions and this
frequency range

To further investigate the accuracy of the zero-thick-
ness approximation, we computed the dispersion dia-
gram of a structure of the same period and where each
thick iris is replaced by only one zero-thickness iris
(Fig. 6). Fig. 7 shows the dispersion diagram when p =
a, b = a/2 and d = a/10 (solid line) and the dispersion
diagram of Fig. 6 (dashed lines) for the same period
and ratio b/a. By comparing Figs. 4 and 7, it is obvious
that, at least for this value of d, replacing the thick iris
by two infinitely thin irises (Fig. 5) is a better approxi-
mation than replacing it with a single iris of zero thick-
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ness (Fig. 6). This again emphasises the importance of
multiple reflections in the unit cell; there are two dis-
continuities per unit cell, whereas Fig. 6 has only one.
Obviously, the two approximations should both be
adequate in the limit d — 0. This is clearly shown in
Fig. 8, where p = a, b/la = 0.5 and d = a/50. The solid
lines are the dispersion diagram with the thickness
accurately taken into account, the dashed lines are
those of Fig. 5 and the dotted-dashed lines are those of
Fig. 6. The agreement between the three results is good
and becomes even better for smaller values of d.

There is, however, an important difference between
Figs. 5 and 6 due to the presence of two discontinuities
per unit cell. This leads to a splitting in the dispersion
diagram. For the particular case where the two irises
are separated by a distance d = p/2, the dispersion dia-
gram should fold back on itself; this is shown in
Fig. 10.
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F|49 .9 Convergence of ky — B diagram when a = 19.5mm, p = a, b =
a

and d
One (- - -), two (A -) and three (——) basis functions

10 [ , - ; . : .

Bp
C|;ig. }20 ko — B diagram of Fig. 5 whena = 19.5mm, p=a, b= 0.5a and
=p

Note that two branches terminate at same point Sp = +7

The convergence of the numerical solution was also
investigated. Fig. 9 shows the dispersion diagram when
p =a, b =04a and d = p/2 when one, two, and three
basis functions are used. It is evident that the TEy
mode is accurately determined with only one basis
function. All the modes propagating in the frequency
range in Fig. 9 are accurately determined using, at
most, three basis functions.

An additional test of the approach consists of deter-
mining the dispersion diagram of Fig. 6 when the infi-
nitely thin irises are separated by a distance of p/2. In
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this case, the period is actually p/2 and the dispersion
diagram should reflect this property. In particular, at
the edge of the Brillouin zone, at least two branches
must meet. This is clearly shown in Fig. 10, where there
is no gap at (ffp = 7, kop = 6.55) and (fp = £, kp =
8.63). This provides an additional validation of the
approach. Further discussion of dispersion diagrams of
periodic structures can be found elsewhere [14].

4 Conclusions

We have presented an accurate field theoretical analysis
of the dispersion properties of circular waveguides peri-
odically loaded with irises of finite thickness. The prop-
agation constants of the Floquet modes are determined
from the classical eigenvalues of a characteristic matrix
instead of a nonlinear determinant equation. Although
only TE,, modes have been analysed, the technique is
applicable to other TE, TM and hybrid modes of a
periodically loaded circular waveguide.
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