330 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 3, MARCH 1999

Analysis and Design of Circular Ridged
Waveguide Components

Jens BornemanrSenior Member, IEEESmain Amari, Jaroslaw UheKMember, IEEE
and Ridiger Vahldieck,Senior Member, IEEE

Abstract—A fast and efficient radial mode-matching technique coordinate system. To avoid this mix of coordinate systems,
(RMMT) is applied to the analysis and design of components the rectangular ridge cross section was assumed to be radially
in circular ridge waveguide technology. Five different structures cut or pie-shaped. Characterizing the mode spectrum of such

are investigated with respect to their performance as filters truct ith - thods has b the f f
and polarizers. For fast computation, pie-shaped metal ridges a structure with various methods has become the focus o

and septa are assumed to better fit the cylindrical coordinate S€veral investigations since 1991, e.g., [1], [5]-[9]. Since then,
system. In practice, the pie-shaped structures are approximated however, only few papers have dealt with tGeparameter

by rectangular cross-section metal inserts. The validity of this analysis of transitions from circular waveguide to CRW. An
approximation is investigated by comparing with measurements oy attempt was published in [2] for bow-tie-shaped metal

and finite-element analysis. It is found that for thin etchable . . . . .
inserts, the measured filter response is in excellent agreementInsert filters (the equivalent té&-plane filters in rectangular

with the theoretical prediction and that for polarizers, the axial Waveguide) based on a radial mode-matching analysis and,
ratio response is not particularly sensitive to the ridge shape. subsequently, in [3] for CRW filters (utilizing the frequency-
Differences bet\_/veen_computed and measured results occur only atdomain transmission-line matrix (FDTLM) method). In [4], the
return loss and isolation levels beyond 25 dB. A central processing 5 ia| mode-matching technique (RMMT) was extended to cal-
unit time comparison with HFSS (4.0) results in a 10-min versus
3-h advantage in favor of the RMMT. culate S—parametgrs _of CRW str_uctures. The work compared
) _ the practical realization of the ridges from rectangular metal
Index Terms—Bandpass filters, mode-matching methods, po- gheets with the theoretical results assuming ridges with pie-
larization, ridge waveguides. . .
shaped cross section. Very good agreement was found, which
also confirmed the results in [2].
I. INTRODUCTION In this paper, we present a more comprehensive analysis
OMPONENTS in circular ridge waveguide (CRW) tech-‘?f CRW structures, in Which we focus our a\_ttention on a
Cnology are attractive in the design of front ends fo_plter st_ructure_and four d_|ffe_rent type_s of polarizers. We are,
modern satellite and terrestrial communications systems, e, particular, interested in investigating the phase-response
[1]-[4], because the circular cross section can be maintain@gPendence on the ridge shape. This has not been done
throughout the entire feed system. Since CRW components Qfioré to this extend, but is of great importance in the
comparable in performance with rectangular ridge waveguiigctical realization of CRW components. Fig. 1 illustrates the
components, lossy transitions are avoided and overall syst&Howing five components under investigation:
sensitivity is enhanced. In particular, when the metal ridges1) circular-waveguide metal-insert filter [Fig. 1(a)];
in CRW are fabricated by etching techniques from thin metal 2) septum polarizer [Fig. 1(b)];
plates and inserted in a split-block housing, the manufacturing3) longitudinal-ridge polarizer [Fig. 1(c)];
process is simplified and higher accuracy can be maintained4) corrugated-ridge polarizer [Fig. 1(d)];
Furthermore, the use of ridge sections shortens the guide®) Pin polarizer [Fig. 1(e)].
wavelength, which in turn, reduces the component lengithe first four components are fabricated in split-block housing
considerably. technology, whereas the pin polarizer utilizes pins realized
A major drawback in the past to develop CRW compdy long screws. (Note that this component has always been
nents was the lack of reliable computer-aided design (CABXperimentally designed so far). Since CRW transformers and
procedures. It was difficult to characterize the normally rectvanescent-mode filters have been addressed in [4], that work
angular cross section of the metal ridges within the cylindricalill not be repeated here.
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(b)

Fig. 1. Ridged circular waveguide components and orientation of the electric ©
field vector at input. (a) Circular waveguid&-plane metal-insert filter.

(b) Septum polarizer. (c) Longitudinal-ridge polarizer. (d) Corrugated-ridgéig. 2. Cross sections involved in the mode-matching analysis of ridged
polarizer. (e) pin polarizer. circular waveguide components.

eigenvalues of Fig. 2(d)—(f) are determined numerically froffnportant to know up to which ridge thickness this assumption
a system matrix which is formulated such that a pole-frdg valid. It should be noted, that although pie-shaped ridges
determinant function is obtained [12]. The field expressions N be fabricated by milling techniques, this is only useful for
subregions lla and b [Fig. 2(d)—(f)], are the same as thosetl#ck ridge structures. Our objective is to use thin metal plates
[7]. For the S-parameter computation, the reader is referrdfat can be etched with high accuracy and low cost to the
to [4]. Similar to [13], electric and magnetic walls are placefecessary geometry. These plates always have a rectangular
in the planes of the ridges to accelerate the algorithm. For tpla@pe. The critical point in the analysis that follows is the

components of Fig. 1(c)—(e), this procedure is equivalent tdrgnslation of the nominal ridge thicknessnto the semiangle

counterclockwise 45rotation [14] of the exciting electric-field ¢o Of the pie-shaped ridge. Our investigations have led to the
vector (cf. Fig. 1). following conclusions: the components in Fig. 1(a) and (c)—(e)

The design of the CRW components is carried out usifj€ €fficiently calculated by using a constant angle of

a Minimax-based optimization routine (e.g., [15]), except of B St
course for the filter of Fig. 1(a), which lends itself to a Po = arcsin{ 5

q_uaS|-syntheS|s procgdure [10]’ [16]. Initial values for th‘In‘he same holds for the septum polarizer of Fig. 1(b) as long
circular septum polarizer [Fig. 1(b)] can be found from [1 : . . . :
. . ; N . s the ridges are fairly thick. For thin and moderately thick

or by scaling dimensions of similar square polarizers [1 . X .

. : rgges in the septum polarizét/« < 0.075), and only for the
with respect to the fundamental-mode cutoff frequencies @ . : . o
the individual ridaed id . A : cross section of Fig. 2(d), it was found that an approximation

€ Individual rigged waveguide sections. A comparnson t includes the gapwidth leads to slightly better results as
the finite-element-based analysis software package HFSS ( WS-
resulted in a 3-h central processing unit (CPU) time job for ' :
a three-septum polarizer with 15 frequency points on a SUN $o = arcsin<7>.
Sparc 20. RMMT required 10 min on a Pentium90 PC for the 2(a+¢)
same task. It should be noted that with increasing frequenRyte that, in this case, the semiangigdepends on the pene-
points, this ratio will even improve in favor of the RMMT tration depth, thus creating, in theory, additional discontinuities
since 75% of CPU time is tied up with determining the modeith respect to the ridge thickness. If for any section of the
spectra of the individual CRW sections. septum polarizer [Fig. 1(b)], subregion lla [Fig. 2(d) and (f)]

Since the fast RMMT analysis of CRW sections is based drecomes extremely smalk/a < 0.02), then the computer
the assumption that the ridges have a pie-shaped cross sectiode replaces that section by the sectoral guide of Fig. 2(b) in
while in reality the ridge cross section is rectangular, it isrder to avoid the possibility of numerical instabilities.

1)

(2)
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d v return Toss (computed) septum poIar_izpr [cf. Fig. 1(b)]; ridge thick_nes,éa = 0.035. Measurements
k o include transitions to rectangular waveguides at input ports.
1 ﬂ insertion loss (computed)
: return loss (measured)
] insertion loss (measured) that these numbers refer to the respective symmetry planes
0~ in the structure; e.g., the septum polarizer of Fig. 1(b) has

28 30 32 34 36 38 only one symmetry plane (vertical), whereas the components

in Fig. 1(a) and Fig. 1(c)—(e) have an additional horizontal
Fig. 4. Measured [16] and computed performance of a three-resonagymmetry_

Ka-band E-plane metal-insert filter according to Fig. 1(a). Dimensions:

a = 4.0 mm, ¢ = 0.15 mm; lengths of insertsl; = Iz = 0.844 mm,

I3 = ls = 2.985 mm; lengths of resonatordy = Ilg = 5.683 mm; l. REsuLTS

Iy = 5.768 mm, ridge thickness/a = 0.0375. Several prototypes in CRW technology have been con-
structed to evaluate the accuracy and reliability of the analysis
Fig. 3 shows a return-loss convergence analysis of a doulkded design procedure. The first example is a three-resoBator
ridged CRW [Fig. 2(e)] of length 0.32axially sandwiched plane metal-insert filter according to Fig. 1(a). Fig. 4 presents
between two circular waveguides. The vertical polarizatiahe return-loss and insertion-loss measurements [16] in direct
[perpendicular to the plane of ridges in Fig. 2(e)] is onlgomparison with the results of this numerical analysis. Excel-
slightly affected by the ridges. Consequently, the corresporidat agreement is obtained up to the second passband at about
ing return loss values are beyond 30 dB for most of the usald®8 GHz. The normalized ridge thickness (thickness-to-radius
frequency range, and the analysis converges with only &io) ist/a = 0.0375.
symmetric mode$9TE + 6TM). The horizontal polarization  Fig. 5 shows a comparison between measured and cal-
(parallel to the plane of ridges) is highly affected by theulated results for a four-sectio@-band septum polarizer
double-ridge insert and, therefore, convergence is reacHedy. 1(b)] with ¢/a = 0.035. The excellent agreement for
with 20 symmetric modeg12TE + 8TM). Based on this return loss/isolation (top) and axial ratio (bottom) confirms the
and similar investigations, we have decided to specify thalidity of the conical-shape approximation. The agreement is
number of TE modes while all TM modes are automaticallhe more surprising as the measurements, unlike the theoretical
considered up to the highest TE-mode cutoff frequency. Tipeedictions, include the effects caused by transitions from
components in this paper have been calculated by up to 2@tangular to quasi-semicircular waveguide at the input ports
modes(15TE + 11TM) for the magnetic-wall symmetry andof the septum polarizer. We attribute this negligible influence
15 modeq9TE + 6TM) for the electric-wall symmetry. Note to the relatively thin ridge thickness.
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Fig. 6. Measured and computed performance of a four-sedidvand
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Fig. 8. Performance of optimized five-section longitudinal-ridge polarizer
[cf. Fig. 1(c)]; ridge thicknesg/a = 0.07.

A slightly thicker septum witht/a = 0.06 has been used in a
four-section 25-GHz septum polarizer design. The comparison
between measurements and results of the mode-matching
design is shown in Fig. 6. Although the general tendency
of the return loss curve seems to be reversed, the software
correctly predicts more than 30-dB return loss (top). Moreover,
the axial ratio computations show very good agreement with
the measured values (bottom).

The discrepancies in return loss are believed to be caused
by the coax-to-quasi-semicircular waveguide transitions at the
input ports of the septum polarizer. These transitions are
present in the measurement setup, but are not included in
the computations. However, as the ridge thickness increases,
the effects of the pie-shape approximation also become more
evident. This is demonstrated by a comparison not affected by
the measurement setup (Fig. 7). A mode-matching design was
carried out for the 30-GHz range and for a ridge thickness
of t/a = 0.1155. Whereas mode matching (conically shaped
ridges) usually predicts a smoothly curved return loss (top), the
rectangular ridge modeled by the finite-element package HFSS
(4.0) is more likely to produce a more pronounced peak. Note
that, in spite of these differences, the axial ratio computations
[Fig. 7(b)] agree remarkably well.

The performance of a longitudinal-ridge polarizer design is

Fig. 7. Mode-matching and finite-element computations of a four—secticﬁhown in Fig. 8. Design speC|f|cat|0ns called for 25-dB return

Ka-band septum polarizer [cf. Fig. 1(b)]; ridge thicknege = 0.1155.

loss and 0.3-dB axial ratio between 23.2—-25.7 GHz. The ridge
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Fig. 9. Performance of optimized corrugated-ridge polarizer [cf. Fig. 1(d)] Measurements and comparisons with the finite-element
with 11 ridges; ridge thickness/a = 0.07. method of different components in ridged circular waveguide
technology demonstrate that a mode-matching technique,
which approximates rectangular cross-section septa or
thickness ist/a = 0.07. Note that the isolation shown herecylinder-shaped screws by conically shaped ridges, can be used
(and in the following figures) is that between the left-hancfficiently in design procedures for front-end components. It is
and right-hand-side polarized components at the output of thgind that the axial ratio response is not particularly sensitive
circular polarizer. It can be determined for “nearly circulato the shape approximation as long as the ridge thickness

polarization” from [10] does not significantly exceed 10% of the radius of the circular
waveguide. Some differences—usually beyond 25 dB—are

Xpd = 24.8 — 20log(ar) dB (3) observed in the return loss and isolation behavior. Therefore,

and in light of the CPU time advantage against commercial

wherear is the axial ratio in decibels. field solvers, the mode-matching technique offers a fast and

Fig. 9 shows the performance of what we refer to a&fficient alternative for CRW component design.
the corrugated-ridge polarizer [cf. Fig. 1(d)]. Eleven ridged
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