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Abstract-A technique to accelerate the numerical solution of scatter- 

ing from multiple waveguide discontinuities by the Coupled-Integral- 
Equations Technique (CIET) is presented. The sums appearing in the 
numerical solution of the integral equations are computed at an initial 

frequency point and then used to accelerate the analysis at subsequent 
frequency points. Only few, typically 2 to 3, terms are needed to reach 

convergence for all structures investigated. Basis functions which in- 
clude the edge conditions are used to guarantee numerical efficiency. 
A special routine to take advantage of the sparsity of the matrix re- 

lating the expansion coefficients to the incident excitation is also used. 
The method is applied to determine the scattering from rectangular 
waveguide E-plane discontinuities as well as multistub E-plane struc- 
tures. Results from this work are compared to measurement and to 
those from the Mode-Matching Technique (MMT) to demonstrate its 

superiority. 
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1. INTRODUCTION 

Waveguide discontinuities are important structures in modern wave- 

guide implementations of filtering, matching, multiplexing, and po- 

larizing devices. Accurate prediction of the frequency performance 
of these devices requires an efficient analysis of the effect of the dis- 

continuities on incident fields as well as the interaction between the 

discontinuities. 

Waveguide discontinuities and their interactions are commonly an- 

alyzed by the Mode-Matching Technique (MMT) where the scattering 
matrices of the individual discontinuities are determined separately 
and then cascaded to obtain the overall response, e.g., [1, 2]. Although 
the effect of the sharp metallic edges is taken into account in modified 

versions of the MMT to calculate the individual scattering matrices 

[3, 4], the interactions between the discontinuities is still determined 

by cascading the individual scattering matrices, thereby considerably 

limiting the effect of the edge conditions. 

A systematic account of both the edge conditions as well as the inter- 

actions between the discontinuities is achievable through the Coupled- 

Integral-Equations Technique (CIET) [5]. Within this framework, the 

modes of the uniform sections are given a minor role in favor of the 

transverse fields at the discontinuities in terms of which the problem is 

reformulated. The interactions between the discontinuities are system- 

atically accounted for regardless of their strength. The primary com- 

putational effort in this technique consists in computing inner products 
in the moment method solutions. These inner products involve infinite 

sums over the modes of the uniform sections of the waveguides. 
The research reported in this paper constitutes a step towards de- 

veloping techniques which allow the analysis of waveguiding structures 

with an arbitrarily large number of discontinuities within extremely 
short CPU times. With this ultimate goal in mind, we propose to 

further improve on the CIET by accelerating the convergence of the 

infinite sums which appear in computing inner products and taking ad- 

vantage of the sparsity of the matrix relating the expansion coefficients 

of the electric field at the discontinuities to the incident excitation. 

Although the problem of an E-plane step discontinuity is a classic 

problem in scattering of guided electromagnetic waves, it is revisited 

here to illustrate the salient features of the approach. The approach 
will be applied to multistub arrangements in subsequent sections. 
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2. ANALYSIS OF E-PLANE STEP DISCONTINUITIES 

An E-plane step discontinuities is first considered to illustrate the es- 

sential features of the approach, especially the acceleration of the tech- 

nique. The structure under consideration is depicted in figure 1. It 

consists of an E-plane step discontinuity at the junction of two rect- 

angular waveguides of cross sections a x bl and a x b2, respectively. 
All metallic walls are assumed lossless. We also assume that only the 

fundamental mode of the rectangular waveguide, TElo , is incident 

from the larger waveguide with amplitude equal to unity at the angu- 
lar frequency w. Due to the symmetry of the structure, only T Eto-x 
modes are excited by the incident TEIO mode whose dependence on 

x, is suppressed from this discussion as it is common to all 

the excited modes. 

Figure 1. Geometry of an E-plane step discontinuity in a rectangular 

waveguide. 

If we assume that the true distribution of the electric field at the 

discontinuity plane is denoted by X(y) (apart from the fol- 

lowing integral equation can be derived [6] 
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° r with similar expressions for the corresponding quantities in 
l.L1j.Lo zm 

region II. 

The notations 8l£ and are introduced for convenience. 

and 

The solution of this integral equation has been extensively discussed 

in [6] and [7] mainly using the static approximation. Here we are not 

interested in its solution at a single frequency point, but rather over 

a range of frequency points. The first and straightforward approach 
consists in solving it repeatedly at each frequency point. An alternative 

and more efficient approach consists in solving the equation once and 

then use this solution to reduce the numerical effort at subsequent 

frequency points. The two alternatives are discussed next. 

2.1 Direct Solution of Integral Equation 

A direct numerical solution of the integral equation for the trans- 

verse electric field at the gap of the discontinuity by the moment 

method starts by expanding the unknown function in a series of basis 

functions [8] 

The number of terms in the series is increased until convergence is 

reached. Using this expansion in the integral equation and applying 
Galerkin's method we obtain a set of linear equations in the expansion 
coefficients c, 

The entries of the matrix [A(w)] and the column vector [U(w)] are 

given by 
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and 

An important observation is necessary here. From the form of the 

matrix equation giving the vector [c], i.e., equation (5), it is easily 
seen that the solution is not affected if both the matrix [A] and the 

vector [!7j are multiplied (or divided) by the same scalar. In all what 

follows, all entries of the matrices [4] and [7] are divided by the 

term and multiplied by wJ.Lo. This is systematically realized 

by taking the wave admittances to be Ym := . Therefore and 

from here on, the wave admittances appearing in all matrix elements 

represent the quantities 1 and not the standard wave admittances. 

A salient feature of the direct solution of the integral equation is the 

fact that the sums in [A(w)]pq are computed ab initio for each new 

frequency point. From the expressions of the wave admittances Y!t (w) 
and it can be easily seen that they decrease as ? for large 
values of m ; a relatively large number of terms may be needed to reach 

convergence. An alternative solution which extracts more frequency- 

independent features from the solution at the first frequency point, 
and stores it for usage at other frequency points, will certainly be 

more efficient. Such an alternative is presented in the next section. 

2.2 Acceleration of Numerical Solution 

Let us assume that the entries of the matrix [4(c)] have been 

computed at a given frequency point wo, i.e., [A(wo)] is known. At 

another frequency point wl , a generic element of the matrix [A(wi)] 
can be written as 
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For large values of m, the terms appearing in the sums in this last 

equation decrease as instead of -L ; fewer terms are needed to reach m m 
convergence. As the numerical results will show, only 2 or 3 terms are 

needed in the residual sums for the structures investigated here. It is 

again important to recall that the "wave admittances" appearing in 

these equations are taken as Y m otherwise the differences in 

the equations above will not have the stated asymptotic form. 

2.3 Basis Functions 

To guarantee numerical efficiency, the basis functions used in the 

moment method solution of the integral equation should contain the 

singular nature of the transverse electric field at the metallic wedge of 

the discontinuity as well as other pivotal a priori information about the 

solution. At a 90-degree metallic wedge, the components of the electric 

field, which are normal to the axis of the wedge, become singular as 

Ir -1/3 as r - 0 where r is the radial distance from the wedge [9]. 
Furthermore, at the flat metallic wall of the waveguide, the normal 

component of the electric field approaches a constant. The following 
set of basis functions satisfies these two local conditions. 

The spectra of these basis functions in the two regions can be expressed 
in terms of Bessel functions of order 1/6 [10] 

and 
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Figure 2. Reflection and transmission coefficient of the discontinuity 
in figure 1: Direct CIET with 30 terms (dashed line), accelerated CIET - 

with 2 terms (solid line). Two basis functions are used. Dimensions: 
a = 19.05 mm, bl = 9.525 mm, b2 = 4.52 mm. 

From the asymptotic forms of the Bessel functions, it follows that these 

spectra decrease as m/ for large values of m . 

In order to demonstrate the influence of the acceleration procedure, 
the present form of the Coupled-Integral-Equations Technique (CIET) 
is applied to the E-plane discontinuity of figure 1. 

Figure 2 shows the reflection and transmission coefficients as a func- 

tion of frequency when 30 terms are retained in the sums of the direct 

CIET (solid line) and when only two terms are retained in the acceler- 

ated form of the CIET. Two basis functions were used in both cases. 

More basis functions were used and resulted in no noticeable differ- 

ence. A CPU time comparison shows that for 200 frequency points, 
the accelerated version is about twice as fast as the direct CIET. 

The convergence of the solution as a function of the number of 

terms in the sums in equation (8) is shown in figure 3. The differences 

between the results with only two terms and those with 5 terms are 
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Figure 3. Convergence of the accelerated CIET as a function of the 

number of terms in the residual sums: 1 term (dotted line), 2 terms 

(dashed line), 5 terms (solid line). Two basis functions are used. Di- 

mensions as in Fig. 2. 

minor; they agree within plotting accuracy. When only one term is 

retained in the residual sums, both the reflection and the transmission 

coefficients are accurately predicted for frequencies lower than 10 GHz. 

2.4 Analysis of an E-Plane Stub 

The previous section presented a detailed discussion of the technique 
we use to accelerate the convergence of the numerical solution of the 

original frequency dependent scattering problem. In this section, we 

apply the technique to an E-plane stub as shown in the inset of figure 
4. We again assume that the fundamental mode of the rectangular 

waveguide, TElO, is incident on the stub with amplitude equal to 

unity. 
This structure was analyzed in [3] using a combination of the gener- 

alized scattering matrix and an analysis similar to what was presented 
in the previous section. 

Because of the symmetry of the structure, the integral equations for 

the transverse electric field at the two discontinuities are also symmet- 
ric. The steps in the derivation are similar to those of the multiple 

H-plane discontinuities [5], and the reader is referred to [5] for the 

computation of the three- and seven-stub configurations of Section III. 
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Figure 4. Reflection coefficient of a single E-plane stub as a function of 

frequency: Accelerated CIET with 2 basis functions (solid line), mode- 

matching technique (MMT) with 5 modes (dashed line), measurement 

(x) from [3]. Dimensions: a = 19.05 mm, bo = b2 = 9.525 mm, bl 
= 12.98 mm, L = 7.68 mm. 

In order to demonstrate the underlying principle in multistub analy- 

ses, we present the two coupled integral equations for the electric field 

X, (y) and X2 (y) at the two discontinuities of a single stub: 

and 

The transformed functions X I (m) and X II (m) in these two equations 
are given by 
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and 

To solve these two coupled integral equations, we expand the two func- 

tions in series of basis functions. Since the two discontinuities have 

essentially the same geometry, we use the same sets of basis functions 

to expand both Xi (y) and X2(y). 

and 

Applying Galerkin's method, we obtain two sets of linear equations in 

the expansion coefficients d and e 

The entries of the matrices in this equation at a frequency c?1 are given 
in terms of those at cvo by 

and 
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For large values of m, the wave admittances become imaginary since 

they correspond to evanescent modes. In this limit, 
1 and - elkzmlL. The 

terms in the sums in the above equations have the same asymptotic 
form as in the case of a single discontinuity although this asymptotic 
form may be reached at larger values of m, especially for small values 

of L. Furthermore, "connecting" elements involve terms of the form 

and decrease exponentially when m is large. Consequently, 

only very few terms are needed for these matrix elements. 

3. RESULTS 

The basis functions of the last section are used to determine the re- 

turn and insertion loss of the stub analyzed in reference [3]. Figure 4 

shows the reflection coefficient of this stub as a function of frequency. 
The solid line are results obtained from the present approach using 
2 basis functions. The dashed line are the results from the standard 

Mode-Matching Technique (MMT) using five modes but no edge con- 

ditions. (Note that the number of modes in MMT is increased within 

the stubs according to the height ratios.) These are identical to those 

presented in [3] and [11] within the readability of the quoted results. 

The agreement between the calculations and the measured values from 

reference [3] is excellent. Note, however, that the results obtained from 

the CIET move slightly closer to the experimental values. 

Figure 5 shows the reflection coefficient in dB of a three-stub struc- 

ture as investigated in [3]. Three basis functions are used at each 

discontinuity within the accelerated CIET. Also shown are the results 

obtained from MMT using 5 modes (dotted line) and 15 modes (dashed 

line). The agreement between the simulated results and the measured 

values of [3] is excellent. 

A comparison between the results from the present work and those 

obtained from the MMT with the proper edged conditions [3], or the 

multimode model presented in [11], shows that the location of the 

resonance peak occurs at a lower frequency in our results, i.e., closer 

to the experimental location. Both methods presented in references 

[3] and [11] predict this peak at 11 GHz. Results from the CIET 

indicate the resonance to be at 10.90 GHz. The measured location 
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Figure 5. Reflection coefficient of a three-stub structure as a function 

of frequency: Accelerated CIET with 3 basis functions (solid line), 
MMT with 5 modes (dotted line) and 15 modes (dashed line), mea- 
surement (x) from [3]. Dimensions: a = 19.05 mm, bo = b2 = b4 
= b6 = 9.525 mm, bi = b3 = b5 = 12.98 mm, 4.29 

mm, L2 = L4 =4.61 mm, L3 = 7.68 mm. 

is, within the readability of the results from [11], 10.88 GHz. The 

second resonance, which occurs around 14.8 GHz, is also present in 

the CIET results and in the multimode model [11]. It is also present 
in the standard MMT, but only when a large enough number of modes 
is used, i.e., when convergence is reached. Note that the results of 

the simulations presented in [11], which predict a main resonance at 
11 GHz, are identical to those obtained from the standard MMT with 
5 modes. If the number of modes is increased, the location of the 
resonance moves towards lower frequencies and converges to 10.92 GHz. 
The same location is obtained from the CIET with only three basis 

function at each of the six discontinuities. 

Convergence tests performed for the transmission coefficient lead 

to similar conclusions and are not shown here. The results obtained 

from cascading the scattering matrices, with and without the edge 
conditions, and with the same number of accessible modes, appear to 

be identical, and less accurate then those of the CIET with the same 

number of basis functions, despite the fact that the inclusion of the edge 
condition considerably reduces the CPU time required to compute the 

scattering matrices. 
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Figure 6. Computed performance of a seven-stub band-pass/band- 

reject filter: Accelerated CIET with 18 terms and 4 basis functions 

(solid line), MMT with 9 modes at input and 18 modes within stubs. 

a) Return loss, b) Insertion loss. 

Figures 6 show the computed performance of a seven-stub band- 

pass/band-reject filter as used in diplexing applications, e.g., [12]. In 

order to not only avoid the issue of determining the number of accessi- 

ble modes and cascading the scattering matrices, in which the modes of 

the uniform sections play an unduly crucial role, but still to accurately 
account for the strong interactions between the different discontinu- 

ities, we formulate the problem in one step and include the proper 

edge conditions at each of the discontinuities. 
' 

The return loss and insertion loss of the filter using the accelerated 

CIET and the MMT are depicted in figure 6a and 6b, respectively. 
The agreement between the results of the two simulations is excellent. 

In order to obtain a fair comparison with respect to the CPU times in- 

volved, a conversion analysis was first performed with the MMT. This 

resulted in nine modes at the input and, since the stubs are about 

twice as high as the input guide, 18 modes in the stub sections. The 

corresponding number of terms for the same field resolution in the 

CIET is 18. For 320 frequency samples and using 4 basis functions 

and 3 terms in the acceleration process, the accelerated CIET is 2.1 

times as fast as the direct CIET, and 28 times as fast as the MMT. 
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More modes in the MMT as well as more basis functions in the accel- 

erated CIET yield negligible changes in both the return and insertion 

losses of figures 6a and b. An increased advantage of the accelerated 

CIET versus the MMT is obtained for structures requiring more modes 

(terms). As an example, the same seven-stub band-pass/band-reject 
filter was recalculated with 30 terms (30 modes in the stubsections, 15 

at input), while all other parameters remained identical. In this case, 
the accelerated CIET turned out to be 2.8 times as fast as the direct 

CIET, but 100 times as fast as the MMT. 

4. CONCLUSIONS 

A technique to accelerate the numerical solution of scattering from 

multiple waveguide discontinuities by the Coupled-Integral-Equation 

Technique (CIET) is presented. Numerical results show that only a 

few terms contribute to the residual sums in the inner products. A 

substantial reduction in CPU time (compared to MMT) is achieved, 

first, when multiple discontinuities are analyzed in a single step, where 

all edge conditions are included simultaneously, and the sparsity of the 

matrix A(w) is taken into account (direct CIET); and second, when 

the computation of the entries of that matrix is accelerated by at- 

tributing much of the computational effort to a single frequency, i.e., 

A(wo) (accelerated CIET). The speed and accuracy of this technique 
makes it possible to analyze structures with a large number of discon- 

tinuities. Excellent agreement between the results from the present 

approach, measurements and the MMT is documented. 
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