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Abstract—The paper presents a rigorous full-wave analysis of tion constant. A more efficient method of this group was pre-
propagation in corrugated and periodically loaded waveguides. sented by Esteban and Rebollar [15]. In their approach, which

The propagation constants are determined from theclassical tayes into account the finite thickness of the corrugations, the
eigenvalues of a canonical matrix eigenvalue problem instead of .

a determinant. The entries of the matrix are computed only once impedance-matrix formulation of th? mode-ma_tching techniqge
per frequency point_ The entire kO — /6 diagram of a Corrugated (M MT) was Used to de”Ve a determ|nant equat|0n from amatrix
circular waveguide, a circular waveguide periodically loaded with  of reduced size [15]. Furthermore, the determinant is shown to

dielectric disks, and a rectangular waveguide periodically loaded pe a polynomial in the propagation constant; this feature is used
with capacitive irises are determined and compared with results to further improve the search for the roots [15].

of other researchers. Excellent agreement is documented in each .
case g The advantages of methods in the second group are well de-

scribed by Davies in connection with the finite-element method
(FEM) [18, pp. 8-11]. Davies argues that methods that deter-
mine the propagation constants from the classical eigenvalues
of a matrix are possibly the most efficient methods provided
|. INTRODUCTION other criteria regarding absence of spurious roots and sparsity
8f- matrices are met [18]. In addition to the FEM, propagation

ERIODIC structures have been investigated by many r . o o :
searchers due to their importance in slow-wave Structur(ré’gwavegwdes periodically loaded with irises of zero-thickness

backward-wave oscillators, corrugated antennas and ante ﬁ,ﬁ beenlanalyzeq by. Collin [3] using moda}l gxpansionslgading
feeds, phase shifters, polarizers, and even transmission syst classical matrix ?'ge”V""'F‘? problem. Similar formulat_|on of
[1]-[18]. The recent discovery of photonic-bandgap materiaﬁ e resonant zero-thickness iris in a rectangular waveguide was

has created a demand for accurate and efficient methGtel pre_sented in [10]. .
n this paper, we present a formulation that allows the

of analysis and design of periodic structures [19]-[23]. In L .
addition, modern satellite communications often requifgf%mplete spectrum of periodically loaded waveguides to be

corrugated antennas and feeds with high symmetry and | termlr\ed frorr;)lthe clzssmal etlgenvalues ofac?nonécal matrlx
cross polarization in the radiation pattern [13], [16]. Accurat%'gznva uﬁ plrdothenlltt robpaga 'ng,tevanzsi:en , ar:Jl comptelx
prediction of the propagation behavior of periodic structurdgdes, shou € latler be present, are determined accurately

is an essential step in the successful design of these systez?ﬁ'g efficiently. The analytic content of the approach makes

A variety of numerical techniques have been used to achidudnore efﬁment, but not as genergl as the FEM [18]. The
proach is based on the coupled-integral-equation technique

this goal. In broad terms, these belong to one of two groups; s ' .
g g g ET), which has the analytical content of the MMT, in

1) methods which determine the propagation constants of dition t i impl hanism to inclugerior:
Floguet modes from a nonlinear (determinant) equation, afffjo!tion to providing a simple mechanism 1o Inciiagrion

2) methods which determine the propagation constants of {h orhmation sucr? asht_hﬁ Edge lcongitic;)n [24], [2|£_-'>].d to TE mod
Floquet modes from the classical eigenvalues of a matrix. € approach, which has already been applied to modes

Among the methods in the first group are those based ith no angular dependence in corrugated circular waveguides
expansions in space—harmonics and the surface impedanc g)l Is here applied to the propagatiqn iq a corrugated girculgr
proach [13]. In these methods, the propagation constants are \—'egu'd_e' a circular waveguide periodically Iqaded W'th li-
termined as the roots of a nonlinear determinant equation fg}_f’elcmc disks, as well as a rectangular waveguide periodically

lowing an iterative process. Such an approach can be time c aided with capacitive irises. Numerical results_ are compared
d\%gh those of other researchers to demonstrate its accuracy and

Index Terms—Eigenvalues, integral equations, modal analysis,
periodic structures.

suming and suffers the risk of missing degenerate or nearly
generate roots. In addition, complex modes introduce an add
tional complexity as they require two-dimensional search algo-
rithms to locate the real and imaginary parts of the propaga-

ficiency.

Il. THEORY

Consider a periodically loaded waveguide, as shown in
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Here,y is the propagation constant of the Floquet mode. The
functionsX; andX3 are, therefore, related by

X3 = G_prl. (5)

When the unit cell exhibits an additional symmetry, such as a
glide—reflection symmetry, for example, the two functidts
andX, are also related through this symmetry. In such a case,
only one unknown function remains to be determined; this was
the subject of a recent paper on a periodically loaded parallel-
plate waveguide with gilde reflection symmetry [29].

When the functionX; andX, are not related by a symmetry
operation, the discussion presented in [29] does not apply; an
alternative transformation of the coupled integral equations is
presented here to deal with this more general case.

Fig. 1. (a) Cross section and side view of a periodically loaded waveguide. TheTo determine the remaining two functiod; andX-, we
e e e e (o982 st use the boundary conditions of the electric feld to elimi-
Rectangular waveguide loaded with capacitive irises. nate the expansion coefficient§ andb;, in favor of X; and

X, and then enforce the continuity of the transverse magnetic

. . . . field at 2 = ¢ and its Floquet condition at = p. Two coupled
known analytically, for the dielectric loaded waveguide, the%?ector integral equations i, andX, result. The details are

are determined straightforwardly [28]. For simplicity, we focuEOt included here, but can be found in [24]; we only present the
attention on the corrugated waveguide shown in Figs. 1(b) a{W ' '

(d) can be handled with minor modifications to deal with the © equations that take the form
nonhomogeneity of the dielectric loaded region. oo XH(n)eW’ _ Xﬂ(n) Cos(kH g)
Following the CIET, the transverse electric and magnetE ) = -

fields in regions | and Il are expanded in series of the normaFt sin(hr.9)
modes of the two regions [24]. Lef, denote the transverse > 1 XE(n)cos(kLt) — X(n)
electric field of thenth normal mode of theth region, &7, . - ZYn sin(kL_¢)

its propagation constant, and: its wave admittance. The n=l "
transverse magnetic field of this mode is writtevgée. x e,)  ang

where e, is the unit vector in thez-direction (direction of

propagatio‘n) [3, p. 174]. We also assume that the transve i X%I(n) Cos(kgzg) _ prX{I(n)

(e. x el)

(ez X eL) (6)

IT
functionse;, are normalized according to n sin(kLL g) (ez X en)
n=1 ne
o > XL (n) — XL(n) cos (kL)
e; M e:n d T — 6n'rn 1 = YI L 2 nz o L . 7
J e g > el e el )

whereS; is the cross section of regian In theith region, the_ Th(te transformation&1(n) and X1(n) are given by
transverse electric and magnetic fields are expanded in series 0 J J

the form o ‘
- Xi(n) = / X; - e dsy, i=12; i=LIT (8)
Ei — Z (a;e—jk;,zz + b;GJk:’:Z) e; (2) S1
n=1 wheresS; is the cross section of region I. To solve these integral
and equations, we expand the two functions in a series of appropriate

basis functions

M

X1=> 6Q, (9)

r=1

H =YV (ane_jk”‘z - b;ef’“fnZ) (e- xei). (3)
n=1

Here,i = I,1I. Let us furthermore assume that the true dis-

tribution of the transverse electric field at= 0, = = ¢, and and

z = p = t+ g are given by three unknown vector functiafs, M

X, andX_3, respectlvely. _ _ X, = Z d,Q,. (10)

In a periodic structure of perigg a generic componett( z)

of the electromagnetic field satisfies the Floquet condition [3, p.

370] The same basis functions were used since the two discontinu-
ities have the same geometry. Substituting these expansions in

Fz+p)=e¢"TF(2) Yz (4) the integral equations and applying the moment method [30],

p=1



AMARI et al: SPECTRUM OF CORRUGATED AND PERIODICALLY LOADED WAVEGUIDES 455

we get a set of linear equations in the coefficiegfsandd,, be straightforwardly and reliably determined using commer-
namely, cially available software packages.

B Note that the entries of the matrices are calculated only once

[A B} [;} + [GG w0 } [c} —0. (11) for each frequency. When regions | and Il have homogeneous

B 4 0 Gew] | d cross sections, such as Fig. 1(b), it is further advantageous to
The entries of the matrices are given by compute the transforms of the basis functions [see (8)] only
once, as they do not depend on frequency, and store them in
> QYn ( ) the computer for later use.
=20 (12) | |
sin( kI ) Once the eigenvalues have been determined, the real and
imaginary parts of the propagation constant « + j3 are
given by
o0 QII )QII( )
1T
Z tan ( Z Y, “tan (KL g) 13) ap=In|A Bp=71A (21)
and SinceA is not changed under an arbitrary skift — Sp+ 2n,
. . the dispersion diagram is periodic fip with period2x, a well
G = i I QEI(”)Q?(”) (14) known result for periodic structures. Itis, therefore, sufficient to
N —" sin(k!L g) determine the dispersion diagram in the interval < 8p < .

In the numerical solution, appropriate basis functions are

Note that matricegA], [B], and[G] are symmetric and real needed. The simplest choice is to use the modes of region | as
since, for lossless structures, the wave admittance is eith@isis functions. For such a choice, the entries of the matrices
proportional or inversely proportional to.,, [3]; the ratio of take simple forms due to the orthogonality of the normal
the wave admittance and trigonometric functions remains realodes [3]. If the edge condition is found to be dominant, basis
These features are exploited in reducing the numerical eff@iihctions that include the edge conditions can be constructed
and avoiding complex arithmetic. by introducing a proper weighting factor [32] or by locally

Equation (11) is not in a convenient form as it contains twsolving Maxwell's equations [33]. For example, suitable basis
different functions ofy, namelye™ ande™"?; a direct solution functions which include the edge condition at thé atetallic
would lead to a nonlinear determinant equation, which we sgédge of Fig. 1(b) are given by

out to avoid. .
We first eliminate the vectold] from (11) to get a reduced Q, = ©p 22)
equation in terms ofc] only, or o [ ( ) )1 178"
I={=
[B][c] + [S][de™ + [S]'[ce™" = 0. (15)
The matrices in this equation are given by Il RESULTS
[R]=AB'A+GB'G-B (16)  The approach presented has been applied to a variety of pe-

riodically loaded waveguides, and here we report the results for

and a few of them.
S]=AB™'G [S]'=GB'A. 17 . .
1] &l A7) A. Corrugated Circular Waveguide
Here,[S]* is the transpose df]. We focus attention on hybrid modes with unity angular
Let A = "7, and note that™"* = 1/A, then (15) takes the dependence, as these are the relevant modes for corrugated
form antennas and antenna feeds [13]. The normal modes of Sec-

tions | and Il are expressible in terms of Bessel functions and
N[S]lel + AR (] + [S]'[e] = 0. (18)  can be found, for example, in [28]. Both basis functions with

Let us introduce a vectde] of the same dimension 44 such and without the edge conditions were used and converged to

that the same result, although a smaller number of basis functions
with the edge conditions are required, especially for strongly

[v] = Al¢]. (19) corrugated waveguides. All numerical results presented in this

section were obtained using three basis functions and summing
The eigenvalue equation, i.e., (18), is finally rewritten in thg2 TE and 32 TM modes in computing the entries of the

more convenient form [31] matrices in (12)—(14).
t To validate the theory and computer code, we determined
R S v S 0 . . .
7 0 + A 0 I =0 (20) the real and imaginary parts of the propagation constant of a

structure analyzed by Esteban and Rebollar [15]. Fig. 2 shows
Here,I is the identity matrix of orded/ x M. Equation (20) the imaginary part of the propagation constant as a function
is in the classicalcanonical form[A][z] + A[B][z] = 0; its of frequency for a corrugated waveguide whes 0.01 mm,
eigenvalues and, consequently, the propagation constants, ganl mm,r; = 10 mm, andr1 /7o = 0.9. The circles are from
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Fig. 4. Realo and imaginanf parts ofy versus normalized frequency for a
circular corrugated waveguide when/rq = 0.4, 7, = 10 mm,¢t = 0.01
mm, andg = 1 mm. The stars are from [15].

Fig. 2. Dispersion behavior of a circular corrugated waveguide= 10 mm,
t =0.01 mm,g = 1. mm, andr,/ro = 0.9. The circles are from [15].
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Fig. 3. Dispersion behavior of a circular corrugated waveguide= 10 mm,

t =0.01 mm,g = 1. mm, andr{/ro = 0.7. The circles are from [15]. Fig. 5. ko — 3 diagram of a corrugated circular whep/r, = 0.4, r; = 10
mm,t = 4 mm, andg = 5 mm. Note the presence of the bandgaps in the
diagram.

[15]. Except for the mode starting at 44 GHz, and which was

not reported in [15], the agreement between the two results is . .
excellent. the bandgaps, separated by passbands, is clearly visible. Note

Fig. 3 shows the same diagram wheriro = 0.7. The circles also that the group velocity of the lowest mode is negative at

are again from [15]. Except for the higher mode, the agreeméﬁt: 0. It turns out that the group velocity of the lowest mode

between the two calculations is excellent. is very sensitive to the depth of the corrugations, a point exten-

A further test of the approach was carried out by computirﬁj"ely illustrated by Clarricoats and coworkers and confirmed

both the real and imaginary parts of the propagation constant Ryrour calculations [13]. Fig. 6 shows the first branch in the dis-

propagating, evanescent and complex modes. In fact, all th@&5sion diagram (with unity angular dependence) for four dif-
The change in sign of the group

modes are computed simultaneously from the eigenvalues of [REENt values of the ratiey /ro. jn ol _
canonical matrix [see (20)]. Fig. 4 shows a ploBafnda versus velocity atg = 0 as the o_Iepth of the corrugation increases is
normalized frequency wheh= 0.01 mm, g = 1 mm,r, — well demonstrated. The first brc_';\nch supports backward waves
10 mm, andr, /vy = 0.4. The dashed lines represent compleff" Strongly corrugated waveguides.
modes where both and3 are nonzero. The stars are from [15].
The agreement between the two results is good, including fRe
presence of complex modes. The second structure investigated consists of a circular wave-
The speed of the present method allows us to determine thede periodically loaded with dielectric disks [see Fig. 1(c)].
entire dispersion diagram of the structure with minimum nun this case, the modes of the dielectric loaded region are de-
merical effort. Fig. 5 shows &, — 3 diagram whert = 4 mm, termined numerically following the presentation of Harrington
g = 5mm,r; = 10 mm, andr;/ro = 0.4. The presence of [28]. We also limit the analysis to TE modes with no angular

Waveguide Loaded with Dielectric Rings
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Fig. 6. First branch irk, — 3 diagram of a circular waveguide for four values of the ratig+,. p = ro, t = ro/5. Note the change in sign in the group
velocity of deep corrugationg-, /r, = 0.3).

dependence given the importance of these mod&8%in s di- observation [8]. A more practical situation corresponding to
electric resonator filters. a disk with dielectric constant. = 10 was also analyzed; its

To establish the validity of the approach, we determing,— g diagram is shown in Fig. 8. The presence of stopbands
the dispersion diagram of a structure where the dielectseparated by passbands is clearly visible. There is no propa-
constant of the disks approaches unity and compare wghtion in the range of frequenci€sl44 < kop < 3.124 and
the analytical results of an empty circular waveguide. Fig.¥436 < kop < 3.767 although other modes with different
shows both numerical and analytical results with= 1. angular dependence might be propagating in this frequency
The agreement between the two is excellent. These resu#iege. The effect of the dielectric loading on the disper-
were obtained from three basis functions and 30 terms wesien diagram is also visible when compared with the empty
summed in computing the entries of the matrices. Note thaaveguide of Fig. 7. The addition of the dielectric disks
both diagrams are plotted using the reduced Brillouin zoh@wers the cutoff frequency and flattens the branches of the
[1]. dispersion diagram resulting in slowly changing group ve-

In the limit £ — p, the dispersion diagram of the peri-locities. Although the first branch exhibits a positive group
odic structure should approach that of a circular waveguidgelocity, other higher branches support waves with negative
loaded with a dielectric rod of dielectric constant. The group velocities, which are essential to devices such as back-
numerical results obtained wheén= 0.99p indeed satisfy this ward-wave oscillators.
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Fig. 9. ko — 2 of arectangular waveguide loaded with capacitive irises.
0in,a =0.9in,b =0.2in, h = 0.15in, andp = 1 cm. This study (solid
line). From [3] (dashed line).

Fig. 7. ko — 8 diagram (solid line) of the structure in Fig. 1 wher= 1.01,
b = 0.5a,p = 0.5,andt = 0.5p. Also shown is the analyticél, — 5 diagram
(dashed line) of an empty circular waveguide of the same dimensions.

We examine the case of an infinitely thin iris to show that
even this simple periodic structure can support complex modes.
T ' ! ' ‘ ' ! Fig. 9 shows thé,— 3 diagram wher = 0, b = 0.2in, @ = 0.9
- in, p = 1 cm, andh = 0.15 in. The dashed lines are from the
: | work of Collin [3, 387] and the solid lines are from this study.

» : : The agreement between the first two branches of the dispersion
/\ diagram is good, but noticeable deviations are present for higher
sl o P , o ] branches. In fact, Collin states that: “Fay(p) > 6.19, the first
higher-order mode begins to propagate, and consequently, the
curves fors.l(p) have little significance fokq(p) greater than
25F : R . about 5,” [3, p. 387]. It is indeed in this region that our results
differ from his.

Fig. 10 shows the real and imaginary parts of the propagation
2\ / constant as a function of frequency for the same dimensions as
: Fig. 9. The stars indicate complex modes. Complex modes in
dielectric loaded waveguides have been extensively investigated
5 = = o i 2 3 by Omar and Schiinemann [35], their existence in corrugated
waveguides seems to have been first suggested by Cooper [36].
An intersting feature of the spectrum of this last structure is
Fig. 8. ko — 3 diagram wher = 10, r; = 0.5r9, p = ro, andt = 0.5p. the existence of complex modes, with constant imaginary part
of the propagation constant (see Fig. 10, dashed lines). In fact,
these modes were also described by Collin for a capacitively
loaded coaxial line where the eigenvalue equation for the prop-

C. Capacitive Irises in Rectangular Waveguide agation constant is easily shown to take the form

3.5

k, P

As a third example, we consider a rectangular waveguide pe- L _ g — B . 0 23
riodically loaded with capacitive irises [see Fig. 1(d)]. We focus cosh{ap) = cos(f) sin(9). (23)

on modes whosg-dependence is that of the fundamental moq_e'r 9is the electric lenath of on riod agtiis the normal
of a rectangular waveguide, i.ein(7(x/a)). For this structure, . €re,r1s the electric length of one period antis th€ normal-

. . . ized shunt susceptance ([37, p. 367]). When the right-hand side
the normal modes of the two regions in the unit cell are take this equation is negative and smaller that. the possible so-
as the longitudinal-section electric (LSE) modes instead of 1I£§kions take the form [37, p. 367, eq. (8 10(;)]
and TM modes [3]. T T
Single irises and multiple irises in the same plane have been
extensively investigated by Lewin using an integral-equation Re[yp] = cosh™(—A)
formulation [34]. Here, we are concerned with the interaction Im(vyp] = =
between multiple discontinuities of a periodic structure along

B .
the axis of the waveguide. A= cos(f) — 5 sin(f) < -1. (24)
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(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

Fig. 10. yversus frequency for a rectangular waveguide loaded with capacitive
irises.t = 0in,a =0.9in,b6=0.2in,h = 0.15 in, andp = 1 cm. The stars

show the complex modes in this structure. [18]

19]

In other words, the propagation constant is complex. Th ol

straight lines in the imaginary part of the propagation constant
in Fig. 10 represent these solutions and provide an addition&31l
validation of the present formulation. 2]

[23]
IV. CONCLUSION
The propagation properties of corrugated and periodically24]
loaded waveguides has been investigated using a formu-
lation leading to aclassical canonical matrix eigenvalue
problem for the propagation constants. Complex, evanegzs)
cent, and propagating modes were accurately determined
for corrugated circular and rectangular waveguides, as,
well as a circular waveguide loaded with dielectric disks.
Excellent agreement between the results of this study and
previously published results was documented. The spe
of the approach allows the determination of the entirgzg;
dispersion diagram of corrugated waveguides with minimum
numerical effort. [2
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