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Abstract—The frequency-domain transmission-line-matrix
method is extended to include absorbing boundary conditions.
Three different approaches are considered: zero-reflection ter-
mination (ZRT), Berenger’s perfectly matched layer (PML), and
anisotropic PML. The ZRT technique is the simplest one of the
three. Its main advantage over the PML techniques is that it
requires no additional nodes to model the boundary. However,
when placed too close to an area with high field intensity, the ZRT
boundary takes out substantial parts of the transmitted power,
thus giving results on the “lossy side.” The numerical losses can
be reduced by moving the boundaries further away from the area
of interest. The PML techniques are more difficult to implement
and require additional nodes for their modeling. However, they
offer more flexibility since the numerical reflections from the
PML absorbers can be controlled by using several layers with
conductivities gradually increasing with depth. The computer
simulations show that Berenger’s and anisotropic PMLs give
virtually the same results. A detailed investigation regarding the
optimal number of layers in the PML absorbers and distances
between the absorbing boundaries and the structure under
analysis is performed.

Index Terms—Absorbing boundary conditions, anisotropic
PML, Berenger’s perfectly matched layer, frequency-domain
TLM method, planar circuitry, zero-reflection termination.

I. INTRODUCTION

SINCE ITS introduction by Jin and Vahldieck [1] in 1992,
the frequency-domain transmission-line matrix (FDTLM)

method has been proven as a versatile numerical tool for eigen-
value and -parameter analyses of microwave and RF struc-
tures of arbitrary shapes. Moreover, utilization of the diakop-
tics technique in the -parameter extraction algorithm greatly
reduces computer memory and CPU time needed for the cal-
culations. This is especially significant when simulating struc-
tures with cascaded discontinuities, such as filters. Thus far,
however, open structures simulated with the FDTLM had to be
enclosed by metallic or magnetic (M-) walls since absorbing
boundaries were not available. Two main disadvantages of this
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approach are evident: first, metallic and M-walls have to be
placed far away from the structure so as not to disturb the elec-
tromagnetic (EM) field in the area of interest and, second, ar-
tificial waveguide modes are introduced by the metallic and
magnetic boundaries. Therefore, in a recent study, we investi-
gated the possibility of implementing absorbing boundary con-
ditions to the FDTLM method. The following two different ap-
proaches were considered: zero-reflection termination (ZRT)
and anisotropic perfectly matched layer (PML). The two tech-
niques were tested on two-dimensional (2-D) (eigenvalue) and

-parameter analyses of various planar circuits. It was con-
cluded that the ZRT boundaries and the absorbers with only one
anisotropic PML provide nearly identical results.

In this paper, we perform a more detailed investigation
of the above-mentioned absorbing boundaries. The purpose
of this investigation is, first, to provide the design engineer
with the specifications of recommended distances between
the absorbing boundaries and the structures under analysis
and, second, to recommend an appropriate number of PML
absorbers. Furthermore, for the first time in literature, we have
introduced Berenger’s PML [2] to the FDTLM method. While
the first two techniques use the already existing FDTLM nodes,
the last one requires development of a completely new node to
properly model the non-Maxwellian medium of the absorber.

II. THEORY

The upper right corner of an FDTLM computational domain
is shown in Fig. 1. The computational domain consists of a mesh
of symmetrical condensed nodes (SCNs) placed in one slice of
the structure under analysis. The EM field inside the computa-
tional domain is represented by a set of voltage waves traveling
through the mesh along the propagation direction.

The voltage waves are always normally incident to the bound-
aries and are reflected with reflection coefficient, e.g.,

for a perfect electric conductor (PEC) or for a per-
fect M-wall. A lossy conductor boundary is simulated by the ap-
propriate complex reflection coefficient. Open space is simply
characterized by , which is why we call this boundary
ZRT. We showed in [4] that the ZRT technique can successfully
be used in the simulations of many open-boundary problems.
The only remaining variable in this approach is the distance of
the ZRT walls from the actual circuit.

A completely different approach in simulating absorbing
boundaries is the PML technique, originally introduced by
Berenger [2] for the termination of FDTD lattices. Since

0018–9480/01$10.00 © 2001 IEEE



1470 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 8, AUGUST 2001

Fig. 1. Discretization mesh of the FDTLM nodes.

then, several versions of this technique have been developed
in the literature. We focus on Berenger’s original PML and
Sacks’ anisotropic PML [3]. To the best of our knowledge,
this is the first time in the literature that Berenger’s PMLs are
implemented in the FDTLM method.

A. Berenger’s PML

Each Cartesian field component in Berenger’s PML medium
is split into two subcomponents (e.g., ), thus
yielding a total of 12 subcomponents related by modified
Maxwell’s equations (PML equations). However, in this paper,
we follow the approach outlined in [6] where the 12 PML
equations with split fields are replaced by six PML equations
with unsplit fields

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

where and are complex permittivities
and permeabilities of the PML medium corresponding to the

-, -, and -directions, respectively. The forms of the complex
permittivities and permeabilities are given by

(2)

where , are relative permittivities and per-
meabilities, while and are electric and magnetic con-
ductivities of the PML medium. and are free-space per-
mittivity and permeability.

Fig. 2. SCN used in the FDTLM for space discretization.

By following the procedure outlined in [6], [7], we see that
the condition for reflectionless transmission of a plane wave
from an isotropic lossless medium (and ) to Berenger’s
PML medium across the -plane interface (
and ) is given by

(3)

where and . For simplicity, it is as-
sumed that the -, -, and -direction relative permeabilities
and permittivities of the PML medium are equal to those of the
isotropic material adjacent to it. Parameter determines the
rate of wave attenuation in the PML and can be chosen arbi-
trarily.

In order to model properly Berenger’s PML medium with the
FDTLM, a new type of SCN has to be derived. As can be seen in
Fig. 2, the SCN is a three-dimensional (3-D) transmission-line
network. It is completely described by its port scattering ma-
trix , relating incident and reflected voltages at the ports
of the node. The centers of the nodes are grid points, denoted
by indexes in the -, -, and -directions, respectively.
Any function of space, i.e., , at point is expressed as

.
The port scattering matrix of the new (i.e., PML) node can be

derived directly from PML equations (1a)–(1f) by using center
differencing and averaging [5]. First, we apply the following
transformations:

(4)
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Note that, according to (4), thenormalizedelectric and magnetic
fields ( and , ), as opposed to theoriginal
fields ( and ) in (1a)–(1f) now have the same units (i.e., volt)
and, therefore, can be added or subtracted at a later stage of the
derivation.

With (4), PML equations (1a)–(1f) simplify to

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

where the normalized admittances and impedances are given by

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

and are free-space impedance and admittance and, ,
and are the dimensions of the node in the-, -, and -direc-
tions, respectively. Center differencing at point trans-
forms (5a)–(5f) into a set of finite-difference equations. For ex-
ample, (5a) is transformed into

(7)

Similarly, the finite-difference equations corresponding to the
rest of (5a)–(5f) can be constructed. The relationships between
the normalized field components and the incident and reflected
voltage waves at the ports of the SCN are well known from
transmission-line theory. For example, for port 1 of the SCN,
we have

(8)

where the minus (plus) sign on the left-hand side of the equation
corresponds to the incident (reflected) voltage wave. The rela-
tionships for the other ports can be found in a similar fashion.

By substituting (8) into (7), a set of expressions relating the in-
cident and reflected voltage waves at the ports of the SCN with
the normalized field values at the node center is obtained. For
example, for , we have

(9)

The next step in the derivation is to express the field variables at
the node center in terms of incident voltages only. This
is accomplished by averaging the mixed normalized electric-
and magnetic-field components, , ,

, , , and along the axes
normal to them. For example, the normalized mixed
components have the-axis normal to them, thus, they can be
averaged as follows:

(10)

By applying (8) to (10), we obtain another set of equations re-
lating incident and reflected voltages at the ports of the SCN
to the normalized field components at the node center. For ex-
ample, for , we have

(11)

Similar relations can be found for the other mixed components.
Using (9) and (11), one can express the normalized field compo-
nents at the center of the SCN in terms of the incident voltages
at the ports of the node. For the example ofand compo-
nents, we can write

(12)

Finally, by substituting (12) for (11), we relate reflected and
incident voltages at the ports of the node by

(13)

where and are vectors containing the incident and re-
flected voltages, respectively, at the 12 ports of the SCN.is
the 12 12 port scattering matrix of the PML node, e.g.,

(14)

It is important to notice that the size of the port scattering ma-
trix of the PML node is the same as that of any other reg-
ular FDTLM node. Therefore, FDTLM modeling of Berenger’s
PML medium requires the same computational effort as mod-
eling of any other (Maxwellian) lossy medium.
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B. Anisotropic PML

Another type of PML considered in this paper is the
anisotropic PML, which was first introduced by Sackset al.
[3] in 1995. This approach is based on using a diagonally
anisotropic material with specially chosen electric and mag-
netic properties to describe the absorbing layer. The main
advantage of the anisotropic over Berenger’s PML is that the
former does not require modification of Maxwell’s equations.
Therefore, no new SCN needs to be derived for modeling the
anisotropic PML medium with FDTLM. A short outline of the
FDTLM formulation follows. For more details, the reader is
referred to [3] and [8].

The source-free formulation of Maxwell’s time-harmonic
equations in the frequency domain is given by

(15)

where and are diagonal tensors of the form

(16)

We consider a situation where a plane wave propagating in an
isotropic lossless medium is incident on a material half-space
described as a uniaxial anisotropic medium. To match the in-
trinsic impedances of the isotropic medium (and ) and the
anisotropic half-space ( and ), the following condition has
to be satisfied:

(17)

Therefore, (16) can be simplified as

(18)

If a boundary between the isotropic medium and the absorbing
layer is in the -plane, and a plane wave is incident upon it,
condition

(19)

will ensure reflectionless transmission of the wave into the ab-
sorbing layer. To absorb the wave, the absorbing layer must be
lossy, i.e., parameters and are complex numbers.

Fig. 3. Results of the 2-D analysis of the microstrip line at 1 GHz.w =

0:6 mm,h = 0:6 mm, and" = 10.

III. RESULTS

To validate the three approaches, several microstrip and
coplanar-waveguide (CPW) structures are selected for com-
parison with measured data or results obtained with other
numerical techniques.

The absorbing boundaries are tested for the 2-D analysis of
a microstrip line with conductor width of 0.6 mm and sub-
strate height of 0.6 mm and . In the simulations, we
use M-wall symmetry, while the top and right-hand-side walls
are absorbing boundaries. First, ZRT boundaries are used. Fig. 3
shows the results of the 2-D analysis performed at 1 GHz for
various distances of the ZRT walls from the metal strip. The
reference data is obtained with an in-house SDA code. When
the ZRT boundaries are too close to the metal strip (area with
high field intensity), they take out (absorb) substantial parts of
the transmitted power, thus, numerical losses show up in the re-
sults of the 2-D analysis. At the same time, the obtainedis
significantly higher than the reference value. As the boundaries
are moved further from the strip, the numerical losses decrease,
and the calculated converges toward the reference value.
When the ZRT boundaries are placed 6 mm ( ) away
from the strip, the calculated agrees with the SDA solution
to within 0.6%, and the normalized numericalis less than
10 . For comparison, we also include the curve calcu-
lated with electric (E-) walls used as top and side boundaries.
We observe that, similarly to the ZRT boundaries, the conver-
gence is achieved at . However, obtained with
E-walls is less accurate than that obtained with ZRT boundaries.
Furthermore, when E-walls are used, a number of waveguide
modes appear in the 2-D solution. These modes can represent a
significant problem in the -parameter analysis of a microstrip
structure with a 3-D discontinuity. On the other hand, when ZRT
boundaries are used, the waveguide modes do not appear in the
2-D solution. The nonexistence of the waveguide modes is the
main advantage of ZRT boundaries over E-walls. When M-walls
are used as the top and side boundaries, the scattering matrices
used in the FDTLM algorithm (see [1]) become ill conditioned.
Therefore, a reliable eigenvalue analysis with M-walls cannot
be performed.
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Additional 2-D analyses of microstrip lines performed with
ZRT boundaries at higher frequencies lead us to the following
conclusion, i.e., the recommended distance of the ZRT bound-
aries from the metal strip is

(20)

where is free-space wavelength and constantis frequency
dependent as follows:

for GHz

for GHz

for GHz.
The same microstrip line is simulated with Berenger’s PML

absorbers used as the top and side boundaries. Although, theo-
retically, the absorbers should be perfectly reflectionless, some
numerical reflections occur due to the finite discretization. To
reduce the numerical reflections, the PML absorbers consist of
several layers with the electric conductivities increasing with
depth according to

(21)

where is the layer number, ’s are the thicknesses of the
layers, is the total thickness of the absorber, and is the
maximal electric conductivity. Parametercontrols the rate of
increase of the conductivities of the successive layers and can
be set arbitrarily. The magnetic conductivities of the layers are
matched to the corresponding electric conductivities according
to (3). For example, the side PMLs, normal to the-direction,
have and matched according to (3) and the conductiv-
ities in the other two directions set to zero. In the corner region,
where there is an overlap of the top and side PMLs, both- and
-directions conductivities are present and set equal to those of

the adjacent PMLs. The-direction conductivities in the corner
PML regions are still zero.

Calculated s for different distances between the absorbers
and the metal strip are shown in Fig. 4. For comparison, we in-
clude the results obtained with Berenger’s PML absorbers with
one and three layers, ZRT boundaries, as well as reference data
obtained with the SDA method. For the PML absorbers, we set

S/m and parameter . We see that the PML ab-
sorber with only a single layer gives almost identical results to
those obtained with ZRT boundaries, which confirms our find-
ings in [4].

By increasing the number of layers in the PML absorber, its
performance is significantly improved. This can be explained
by the fact that a larger number of layers with gradually in-
creased conductivities creates less abrupt transitions between
the isotropic material and the first PML, as well as between
the PMLs inside the absorber. Consequently, the numerical re-
flection between the isotropic material and the PML absorber
is decreased. In Fig. 4, we can see that the PML absorbers with
three layers can be placed approximately 3 mm ( )
away from the metal strip for sufficient accuracy. Analyses per-
formed for other planar structures and frequencies have con-
firmed that the optimum number of layers in a Berenger’s PML

Fig. 4. Effective permittivity of the microstrip line at 1 GHz.h = 0:6 mm,
0.6 mm, and" = 10.

absorber is three, maximal conductivity is 50 S/m, and param-
eter . The recommended distance between the absorber
and metal strip can be set according to

(22)

where

for GHz

for GHz

for GHz.

As explained in [6], anisotropic and Berenger’s PMLs
are mathematically equivalent. Therefore, we expect the two
techniques to provide the same results. This is confirmed at the
example of a microstrip line with a lossless dielectric substrate
with relative permittivity of . The thickness of the sub-
strate is mm and the strip width mm. Effective
permittivity curves, for the frequency range of 1–30 GHz, are
calculated with both techniques. The FDTLM simulation is
carried out with PML absorbers with three layers placed 5 mm
from the strip. This distance corresponds to at
1 GHz. Conductivities of the layers are calculated from (21)
with S/m and . When Berenger’s PML is
used, the medium in the corner region has-direction con-
ductivities set to zero, and- and -directions conductivities
equal to those of the adjacent PMLs. In the case of anisotropic
PML absorbers, the permittivity and permeability tensors of
the PML medium are given by (18). For the PMLs in the top
and side absorbers, parameters and follow condition
(19) in the appropriate form. For example, for the top absorber,
the parameters have the following relationship: .
The values of parameters and for the corner regions are
obtained by using a more general expression for matrix
given by

(23)
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Fig. 5. Frequency-dependent" of the microstrip line withh = 0:5 mm,
w = 1 mm, and" = 4.

where , . This expres-
sion can be derived by using the mathematical equivalence of
the Berenger’s and anisotropic PMLs. Due to lack of space,
the derivation is not presented here; however, a more interested
reader is referred to [6] and [8]. One should note that parame-
ters and in the noncorner regions can be obtained from
(23) by setting ’s in the appropriate directions to unity. For ex-
ample, by setting , we obtain parameters and

of the top absorber’s PMLs. In the corner region,is set to
one, while and are equal to those of the adjacent side and
top PMLs, respectively.

The calculated curves together with the reference data
taken from [9] are shown in Fig. 5. The required number of
nodes in the computational domain is 18 18, including
the nodes in the absorber. As predicted, the simulations with
anisotropic and Berenger’s PMLs give virtually identical
results. The two techniques agree to within three decimal
points. The FDTLM results are in excellent agreement with
the reference data, obtained with the FDTD method in a com-
putational domain of 210 80 cells. The difference between
the curves obtained with FDTLM and FDTD is less than
1%. Since Berenger’s and anisotropic PMLs give virtually
identical results and there is no difference in computational
effort required for modeling the two media, they will not be
distinguished in this paper. They will be referred to simply as
the PML.

The PML and ZRT boundaries are tested for-parameter
analysis of a CPW resonator with L-shaped series stubs whose
mean lengths are 1.35 mm. The primary objective of the per-
formed tests is to determine a sufficient distance between the ab-
sorbing boundaries and the structure under analysis. The geom-
etry of the resonator and its transmission coefficient calculated
with ZRT boundaries are shown in Fig. 6. To reduce the compu-
tational effort, we apply an M-wall condition in the symmetry
plane. The absorbing boundaries are placed at the top, bottom,
and right-hand side of the structure. We also include the refer-
ence data [10] obtained with the space domain integral equa-
tion (SDIE) technique. In order to arrive at accurate results, the
ZRT boundaries have to be placed approximately 1.5 mm from

Fig. 6. Transmission coefficient of the CPW resonator with L-shaped series
stubs.w = 0:225 mm,s = 0:45 mm,L = 0:45 mm, andL = 1:125 mm.
Substrate thicknessh = 0:635 mm and" = 9:9.

Fig. 7. Radiation loss1�jS j �jS j of the CPW resonator with L-shaped
series stubs.

the resonator. This distance corresponds to , which is
the recommended distance for the microstrip at 16 GHz, given
by (20). We see that the recommendations given for microstrip
circuits can be used for CPW structures as well. The calculated
radiation loss for the CPW resonator with bent series stubs is
shown in Fig. 7. Excellent agreement between the FDTLM and
SDIE is achieved when the ZRT boundaries are placed 1.5 mm
from the CPW structure.

The PML absorber used in the simulations consists of
three layers with electric conductivities increasing with
depth, as given by (21). The maximum conductivity is set to

S/m and parameter . The conductivities
of the absorber’s layers, including the corner regions, are set
in the fashion described in the examples of the microstrip
lines of Figs. 4 and 5. The distances between the absorbers
and the CPW structure are half the distances used for the
ZRT boundaries. Fig. 8 compares the calculated transmission
coefficient with the reference data [10]. A very good agreement
between the FDTLM and SDIE results is achieved when the
PML absorbers are placed 0.8 mm from the CPW structure. As



PASALIC et al.: ABSORBING BOUNDARY CONDITIONS IN FDTLM METHOD 1475

Fig. 8. Transmission coefficient of the CPW resonator with L-shaped stubs.
PML absorbers are used as the absorbing boundaries.

Fig. 9. Radiation loss1 � jS j � jS j of the CPW resonator with
L-shaped series stubs obtained for various distances between the PML absorber
and resonator structure.

in the case of ZRT boundaries, this distance corresponds to the
recommended distance for microstrip circuits (22).

The radiation loss of the resonator calculated for various dis-
tances between the PML absorber and CPW structure is shown
in Fig. 9. When the boundaries are placed 0.8 mm from the
resonator, we obtain excellent agreement between the FDTLM
and reference data. From Figs. 7 and 9, we see that the calcu-
lated radiation is increased when the absorbing boundaries are
placed too close to the resonator. Accordingly, the minimum of
the transmission coefficient gets less sharp. This effect can be
explained by aforced radiationinduced by absorbing bound-
aries placed too close to the areas of high field concentration.

Finally, the FDTLM with ZRT and PML boundaries is used to
analyze the asymmetrically edge-fed patch antenna [11], which
is illustrated in Fig. 10. The absorbing boundaries are placed ac-
cording to (20) and (22) for the lowest frequency (i.e., 5 GHz).
The comparison of the FDTLM results with the experimental
data taken from [11] is shown in Fig. 10. The FDTLM cor-
rectly predicts the general shape of the return loss. The resonant

Fig. 10. Frequency-dependent reflection coefficient of the asymmetrically
edge-fed patch antenna. Comparison of the FDTLM with PML and ZRT with
experimental data.

frequencies are in perfect agreement with the measured data.
However, slight differences between the modeled and measured
curves occur. For example, a fine ripple occurs in the measure-
ment at about 17.5 GHz due to some problems with the measure-
ment setup, as discussed in detail in [11]. Additionally, some
parameters, such as dielectric and conductor losses, are not in-
cluded in the simulation, which further contributes to the dis-
crepancy between the theory and experiment.

IV. CONCLUSIONS

A very efficient implementation of open boundary conditions
into the FDTLM method has been presented. The easy-to-imple-
ment ZRT technique utilizes the unique way of field representa-
tion in the TLM method. Its main advantage is that it requires no
additional nodes to model the boundary. However, if ZRT walls
are placed too close to the structure area with high field intensity,
they absorb the transmitted power, thus creating unwanted nu-
merical losses. The only way of reducing the losses it to move
the ZRT walls further from the area of interest. The PML ab-
sorbers are more complicated to implement and require addi-
tional nodes for their modeling. However, they provide more
flexibility than ZRT boundaries since the numerical reflections
from the PML absorbers can be decreased without moving the
absorbers far away from the areas with high field intensity. The
numerical reflections can be reduced by increasing the number
of layers in the PML absorbers. Computer simulations demon-
strate that Berenger’s and anisotropic PMLs give virtually the
same results and that absorbers with three layers are sufficient
for accurate analyses of most planar circuits. The distance be-
tween the absorbing boundaries and the structure under analysis
should approximately be half as large for the PML absorbers as
for the ZRT boundaries.
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