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ABSTRACT: An analysis method based on the coupled-integral-equations technique (CIET)
and the mode-matching technique (MMT) is presented for the design of a variety of direct-
coupled waveguide filters suitable for applications in the lower gigahertz frequency range.
The method is verified by comparison with data obtained through other numerical tech-
niques and measurements. With reference to standard waveguide filters, the issues of filter
miniaturization and stopband extension toward higher frequency bands are investigated.
For given frequency specifications in the 2-GHz frequency range, examples of rectangular
coaxial waveguide filters, ridge waveguide filters, ridge waveguide filters including coupling
irises and T-septum waveguide filters are presented. It is demonstrated that the rectangu-
lar/square coaxial waveguide filter achieves the highest degree of miniaturization, but that
ridge and, especially, T-septum waveguide filter technology is advantageous with respect to
stopband performance toward higher frequencies. In particular, a T-septum filter centered
at 2.155 GHz is shown to block the entire frequency range up to 7.5 GHz. © 2002 Wiley
Periodicals, Inc. Int J RF and Microwave CAE 12: 217–225, 2002.

Keywords: waveguide technology; filter design; numerical modeling; integral equations;
mode-matching techniques

I. INTRODUCTION

Direct-coupled resonator waveguide bandpass fil-
ters have been used as communication and satel-
lite network components for decades [1]. Accurate
synthesis and analysis techniques, many of them
based on rigorous field-theoretical methods, are
now available to the microwave design engineer,
e.g. see ref. 2. In the lower Gigahertz frequency
range, however, waveguide filter components are
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ece.uvic.ca.

usually bulky and exhibit serious shortcomings in
operational bandwidth.

This has initiated the development of modified
cross-sections such as the ridge waveguide [3],
the T-septum waveguide [4–7] and the L-shaped
waveguide [8, 9]. Although their power-handling
capabilities are lower than that of an empty
waveguide operated at the same frequency, the
gain in operational bandwidth and the potential
for miniaturization make these modified wave-
guides better suited for applications in the lower
gigahertz frequency range.

Another frequently used technology consists of
square or rectangular coaxial waveguides [10, 11]
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that, due to their TEM propagation characteris-
tics, are very well suited for L-band (and lower)
feed systems and components, e.g. see ref. 12.

To provide the design engineer with guidelines
and performance expectations of filter responses
in the lower gigahertz frequency range, this
article focuses on a comparison between differ-
ent direct-coupled waveguide filter technologies.
In particular, we investigate the square coaxial
waveguide filter, the ridge waveguide filter, the
ridge waveguide filter including coupling irises
and the T-septum waveguide filter. Although
ridge and T-septum structures have been analyzed
by members of the group before [13, 14], com-
ponents have always been interfaced with bulky
standard waveguides and have not been used as
stand-alone technology. Moreover, for a reliable
and accurate mode-spectrum analysis, this arti-
cle uses the coupled-integral-equations technique
(CIET), e.g. see refs. 15 and 16, in the analysis
and design process.

II. THEORY

For the analysis of filter components in lon-
gitudinal (axial) direction, the mode-matching
technique (MMT) is used. This procedure is
well known, e.g. see ref. 2, and need not be
repeated here. Instead we focus on the mode-
spectrum analysis of the individual waveguide
cross-sections under consideration, which are
illustrated Figure 1. The rectangular waveguide
(Fig. 1a) is connected to the rectangular coaxial
waveguide (Fig. 1b), the ridge waveguide (Fig. 1c)
or the T-septum waveguide (Fig. 1d). For transi-
tions to the rectangular coaxial waveguide, both
symmetry planes at a/2 and b/2 are used. Dis-
continuities involving the ridge and T-septum
waveguides employ the symmetry condition at
a/2 only. The most general case is the T-septum
waveguide (Fig. 1d) from which the ridge wave-
guide is derived by letting g = e and eliminating
subregion IIc. The rectangular coaxial waveguide
(Fig. 1b) is obtained from the ridged waveguide
solution by introducing a magnetic wall (m.w.) at
b/2 and adding the solution of the TEM wave to
the cross-sectional eigenfunctions.

A. Mode Spectrum

The TE-mode (subscript h) cross-section func-
tions, e.g. see ref. 2, for the T-septum waveguide

(Fig. 1d) are given as

T IIa
h =

N∑
n=0

AIIa
n cos

(
kIIa
xhnx

)cos�nπy/b�√
1+δ0n

� (1)

T IIb
h =

K∑
k=0

AIIb
k

sin
{
kIIb
xhk

(
x− a

2

)}
kIIb
xhk

cos�kπy/c�√
1+δ0k

� (2)

T IIc
h =

L∑
l=0

AIIc
l cos

{
kIIc
xhl

(
x− a

2

)}

× cos�lπ�y−d�/�b−d��√
1+δ0l

� (3)

where δ0i is the Kronecker delta and divisions by
kxh are introduced to keep the resulting expres-
sions real for imaginary kxh. The respective func-
tions for the TM modes (subscript e) are:
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The TEM mode (subscript T ) of the rectangular
coaxial waveguide (Fig. 1b) is derived from the
equation system of a TM mode with the cutoff
wavenumber being zero, e.g. see ref. 10. Note that
under this condition, linear cross-section func-
tions, whose derivatives result in constant fields,
are also solutions of the wave equation. With
I0 being the potential of the center conductor,
we get
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Following the CIET, e.g. see ref. 15, basis func-
tions are introduced, which incorporate the edge



Low-GHz Waveguide Filters 219

y

a g

c

d

b

IIa

IIb

IIc

y

x

a e

b

IIa

IIa

IIb

IIb

I

y y

x

xx

bb

c

c

e

eaa

m.w.

m.w.

m.w.

m.w.

m.w.m.w.

a/2a/2

a/2 a/2

b/2b/2

(a) (b)

(c) (d)

Figure 1. Cross-sections and symmetry conditions considered in the analysis; (a) rectangular
waveguide; (b) rectangular coaxial waveguide; (c) ridged waveguide; (d) T-septum waveguide.

conditions at the respective locations of field sin-
gularities as well as their images.
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of the basis functions with respect to adjacent
subregions IIa, IIb or IIc, e.g. see ref. 15, and
applying Galerkin’s method, a homogeneous
matrix equation system of the form[
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is obtained. Here, c and d are the coefficient vec-
tors of basis functions in apertures IIb and IIc,
respectively, at x = e. For the TE modes of the
T-septum waveguide (Fig. 1d), the entries of the
submatrices are:
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Those of the TM modes are given by:
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The TE- and TM-mode formulations for the
rectangular coaxial waveguide (Fig. 1b) and the
ridged waveguide (Fig. 1c) follow straightfor-
wardly from the above relations. Only the TEM
mode of the coaxial waveguide requires a special
treatment. Here we arrive at the inhomogeneous
matrix system
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Note that in all cases, the number of terms in
individual subregions appears only as sums in
the entries of the respective matrices. Therefore,
all entries can be individually tested for conver-
gence with respect to the mode numbers N , K,
L. The matrix size depends exclusively on the
number of edge-conditioned basis functions. This
is one of the salient features of the CIET for-
mulation as problems associated with relative
convergence are eliminated.

B. Modal Scattering Matrix

The computation of the modal scattering matrix
from an empty waveguide (Fig. 1a) to one of the
three cross-sections in Figure 1(b)–(d) follows the
general mode-matching technique, e.g. see ref. 2.
Modes are arranged with respect to TEM, TE and

TM modes and increasing cutoff frequencies, the
lowest being the TEM mode (Fig. 1b) and the TE1
mode for the structures in Figure 1(c), and (d).
Therefore, the coupling matrix is arranged as

M =
[
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]
� (22)

where the number of columns is given by the mode
spectrum of the coaxial waveguide and the num-
ber of rows by that of the empty waveguide. Note
that JeT is a single-column matrix, which disap-
pears if the TEM mode is not present, e.g., for
ridged waveguide and T-septum structures. The
entries of submatrices J in (22) are given by
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where T I
hq, T I

ep denote the well-known TE-,
TM-mode cross-section functions (c.f. [2]), respec-
tively, of the empty waveguide I (Fig. 1a), and

⇀
uz

is the unit vector in axial direction.
Once the modal scattering matrix of a single

discontinuity is determined, filter structures can
be analyzed by cascading waveguide sections and
modal scattering matrices of subsequent discon-
tinuities. To verify the approach presented here,
results obtained by this technique are compared
with data available from the literature and/or mea-
surements. Excellent agreement is demonstrated
in Figure 2 for a rectangular coaxial waveguide
filter and in Figure 3 for a configuration involving
ridge waveguide discontinuities.

III. RESULTS

In this section, we compare a number of different
filter configurations for similar design specifi-
cations. A typical design cycle includes a filter
synthesis using impedance/admittance inverters,
e.g. see ref. 2, and a fine optimization involving
minimax algorithms [17].

Filter comparisons can be carried out by main-
taining certain parameters and improving others.
Usually, bandwidth and return loss are kept con-
stant whereas the topology can vary. In this case,
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Figure 2. Response of a five-pole rectangular coaxial
waveguide filter and comparison with data presented in
[10].

we opted for maintaining bandwidth and the num-
ber of resonators. The reason behind this approach
is the relationship between return loss, stopband
performance and degree of achievable minia-
turization for some of the structures involved.
Moreover, the stopband performance (both close
to the passband and toward higher frequencies) is
related to the number of resonators (return loss
poles). Therefore, filter designs are carried out
for a given number of six resonators while achiev-
ing a reasonable compromise between stopband
attenuation and inband return loss. Emphasis is
placed on the overall filter size, namely the inner
cross-section dimensions of the waveguide hous-
ing and filter length measured from the first to the
last coupling section (the usual matching sections
to coaxial cable are excluded) and the stopband
behavior toward higher frequencies.

As the first example, a standard waveguide
inductive-iris filter is designed for a passband of
2.108–2.205 GHz, 27-dB return loss and stop-
band specifications of 30 dB at 2.07 and 2.27

Figure 3. Return loss of four ridged sections in
Ku-band waveguide and comparison with measure-
ments in [13].

GHz. The performance of the resulting six-pole
filter is depicted in Figure 4. Due to disper-
sion in standard waveguide filters, the second
passpand (2.94–3.23 GHz, 30-dB stopband up to
2.86 GHz) occurs far below the theoretical har-
monic passband of 4.216–4.41 GHz. Moreover,
and especially due to the application in the lower
gigahertz frequency range, the filter is quite bulky
with inner dimensions of 86.36 mm × 43.18 mm ×
515.92 mm = 1.99×106 mm3.

The investigation now focuses on reducing the
overall filter size and improving the poor stopband
performance of the standard waveguide filter in
Figure 4.

In the frequency range of interest, rectangu-
lar/square coaxial waveguide technology is com-
monly employed in satellite feed systems [12]. As
described in the previous section, the mode spec-
trum of a square coaxial cross-section with 50 '
impedance is analyzed using ten basis functions
and 50 expansion terms. The mode-matching tech-
nique for the rectangular-to-coaxial waveguide
discontinuity utilizes up to 84 modes altogether.
(Similar numbers are used for the analysis and
design of all filters presented in this section.)
After initial synthesis and optimization, the filter
performance shown in Figure 5 is obtained. Com-
pared with the filter of Figure 4, the inband return
loss is now 34 dB, the stopband attenuation level
is significantly increased, and the second passband
agrees with the harmonic one as expected for
TEM propagation. The filter size is 15.24 mm ×
15.24 mm × 394.6 mm = 9.16× 104 mm3 – a size
reduction by more than a factor of 20. Depend-
ing on the power level to be handled by this filter,
a further size reduction is possible with respect
to the cross-section. A similar filter design (not
shown here) uses a 7.62 mm square housing and

Figure 4. Insertion and return loss of synthe-
sized/optimized six-pole inductive-iris waveguide filter
for 2.155 GHz.
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Figure 5. Insertion and return loss of synthe-
sized/optimized six-pole square coaxial waveguide filter
for 2.155 GHz.

occupies an inner space of 2�26 × 104 mm3, thus
resulting in a reduction factor of 88.

A further improvement of the stopband per-
formance is possible by utilizing a waveguide
technology in which modifications to the stan-
dard rectangular cross-section allow for the
fundamental-mode cutoff frequency to be reduced
substantially. A typical example is the ridge wave-

Figure 6. (a) Insertion and return loss of synthe-
sized/optimized six-pole ridge waveguide filter for
2.155 GHz. (b) Performance of six-pole ridge waveguide
filter with reduced-size waveguides in coupling sections.

guide and Figure 6(a) presents the response of
such a filter design. The inband return loss is 32
dB and the 30-dB stopband is extended to 4.86
GHz. The inside filter dimensions are 38.1 mm
× 38.1 mm × 258.44 mm = 37�5 × 104 mm3,
which is larger than the square coaxial design yet
more than a factor of 5 smaller than the standard
waveguide filter of Figure 4.

Some discussions were focused on a further
size reduction of the ridge waveguide filter by
introducing smaller waveguide sections between
the ridge resonators. The data associated with
Figure 6(b), however, prove this assumption
wrong. The filter performance is improved only
slightly and so is the overall size of this filter
(38�4 × 104 mm3), which uses the same cross-
section as that in Figure 6(a). The reason for this
is that in Figure 6(a), the resonators are much
shorter than half a wavelength due to the highly
evanescent character of the below-cutoff sections
between the ridges [18]. With reduced size waveg-
uide sections between the ridges, however, the iris
character of such sections encourages the forma-

Figure 7. (a) Insertion and return loss of synthe-
sized/optimized six-pole T-septum waveguide filter for
2.155 GHz. (b) Validation of T-septum filter design by
independently developed all-MMT software.
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TABLE I. Performance Comparison of Six-Resonator 2.155-GHz Waveguide Filters

>30dB Size Reduction
(Achievable) Attenuation to Waveguide

Filter Type Return Loss [dB] up to 
GHz� Iris Filter Figure

Waveguide iris 27 2.86 1 4
Square coax 34 4.13 20–88 5
Ridged waveguide 32 4.86 5.3 6(a)
Aperture-coupled

ridged waveguide 20 4.95 5.7 6(b)
T-septum waveguide 24 7.60 27 7(a) and (b)

tion of close to half-wavelength ridge resonators,
which makes the performance similar to that of
the standard waveguide filter in Figure 4. Once
the optimization is set to enforce the stopband
up to 4.86 GHz, the structure of Figure 6(b) does
not offer a real alternative to that of Figure 6(a),
especially not so with respect to manufacturing
issues and a reduced inband return loss of 20 dB.

The last technology investigated is the T-
septum waveguide, e.g. see refs. 7, and 14.
Figure 7(a) shows the performance of a compara-
ble T-septum waveguide filter. The inband return
loss is 24 dB, and the 30-dB stopband is pushed
up to 7.6 GHz. The filter dimensions are 25.4 mm
× 19.05 mm × 147.45 mm = 7�13 × 104 mm3,
which brings this design in the order of magnitude
of a square coaxial waveguide filter, although with
a stopband performance that cannot be achieved
by directly coupled coaxial resonators. Also shown
(Fig. 7b) are the results of an independently devel-
oped code using the mode-matching technique
without incorporating edge conditions (all-MMT).
Except for some minor deviations beyond 23.5-dB
return loss, the agreement between the two meth-
ods is excellent, thus validating the theoretical
approach presented here.

Table I compares the performances of the
2.155-GHz filters designed with the technique
presented in this article. From a view of good
return loss and very high degree of miniatur-
ization, the square coaxial filter appears to be
the obvious choice. However, T-septum filter
technology achieves by far the best stopband per-
formance even while maintaining a small size and
reasonable return loss.

Finally, we would like to address the issue of
losses. From the theory presented, it is apparent
that the analysis assumes all conducting material
to be ideally conducting. Whereas a loss analy-
sis can straightforwardly be included in standard
waveguide filters (e.g., a silver-plated version of

the filter in Figure 4 will exhibit 0.12-dB insertion
loss), this is extremely difficult for the structures
presented in Figures 6 and 7. Following a pertu-
bation technique applied to a T-septum waveg-
uide filter in a diplexer configuration [19], it is
assumed that the T-septum filter of Figure 7, when
silver plated, will be measured with approximately
1.5-dB insertion loss. Whether this can be justi-
fied in applications requiring the extended stop-
band and associated miniaturization, remains to
be decided on an individual basis.

IV. CONCLUSIONS

A variety of different waveguide filter config-
urations is presented for an application in the
2-GHz frequency range. As expected, the rectan-
gular/square coaxial waveguide filter is the pre-
ferred choice if miniaturization is the dominant
design criterion. However, if extended stopband
performance together with a suitable degree of
miniaturization are the main requirements, then
the T-septum waveguide filter or even the ridge
waveguide filter presents powerful alternatives
to coaxial-waveguide and standard-waveguide
technology. The theoretical analysis technique is
verified for a number of different configurations
and, therefore, inspires confidence in the design
data presented.
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