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Abstract—The singlet, which contains one resonator and gener-
ates one transmission zero, is introduced as the most basic building
block for modular design of elliptic filters. Higher-order elliptic
filters are designed by cascading singlets to generate the required
transmission zeros. A novel model, the nonresonating node model
(NRNM), which contains both resonating and nonresonating nodes
is then introduced. The model allows a high level of modularity in
the design of elliptic filters. Example filters are designed and mea-
sured to validate the model and the design approach.

Index Terms—Bandpass filters, design, dual-mode filters, elliptic
filters, resonator filters, synthesis.

I. INTRODUCTION

E LLIPTIC and pseudo-elliptic filters offer optimal solu-
tions to filtering structures with sharp cutoff skirts and

low in-band insertion loss. To reduce the sensitivity of these
filters to manufacturing tolerances, modular coupling schemes
such as cascaded triplets and quadruplets are preferred [1].

The synthesis and design of these filters are based on models
which consist of a network of interconnected nodes that are
all resonating except for the nodes at the input and the output
[2]–[4]. We show in this paper that such a model is unneces-
sarily restrictive and propose a new model, the nonresonating
node model (NRNM), which involves both resonating and non-
resonating nodes and is, therefore, more general.

In this paper, we introduce the most basic building block for
modular design of elliptic filters. The building block, called
singlet, contains one resonator and generates one transmission
zero. Higher-order elliptic and pseudo-elliptic filters can be de-
signed by cascading singlets and resonators.

II. SINGLET

A singlet is a structure which contains one resonator and
generates one transmission zero by bypassing the resonator as
shown in Fig. 1. The synthesis of a singlet to yield a transmis-
sion zero at a prescribed frequency and an in-band return loss
over a specified passband can be carried out using the technique
presented in [5]. For example, the following coupling matrix
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Fig. 1. Coupling and routing scheme of a singlet: one resonator with one
transmission zero.

yields a singlet response with a transmission zero at normalized
frequency with an in-band return loss of 20 dB

(1)

To generate a transmission zero in the lower stop-band the by-
pass coupling and the frequency shift of the resonator must
change sign.

Once the coupling matrix is known, the implementation of
the coupling coefficients can be carried out following standard
techniques [6].

III. NON-RESONATING NODE MODEL (NRNM)

We first consider a second-order filter with an in-band return
loss of 20 dB and two transmission zeros at normalized frequen-
cies and . The emphasis is on modularity in order
to guarantee reduced sensitivity to manufacturing tolerances.

In existing models, to get two transmission zeros out of two
resonators, it is necessary to couple the source to the load [3].
However, by directly coupling the source and the load, the two
transmission zeros become inter-dependent and cannot be easily
controlled independently. This coupling scheme lacks modu-
larity and flexibility.

A model in which the two transmission zeros can be con-
trolled independently is shown in Fig. 2(a). The ’s are admit-
tance inverters, the ’s are constant reactances and s stands for
a unit capacitance [4]. Note that the third node in this structure
is connected to ground by only a constant reactance , it is
a nonresonating node (NRN). The port parameters of an NRN
are simply those of a shunt admittance, they can be found in
any textbook on electrical networks, e.g., [7]. The coupling and
routing scheme corresponding to Fig. 2(a) is shown in Fig. 2(b).
A straightforward analysis of this structure shows that it is in-
deed of second-order with two transmission zeros. An extremely
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Fig. 2. Nonresonating node model (NRNM) of two cascaded singlets. (a)
Equivalent low-pass network and (b) coupling and routing scheme.

Fig. 3. Nonresonating node model (NRNM) of a third-order filter with two
cascaded singlets and one additional resonator. Dark disks: resonators; patterned
disks: nonresonating nodes.

important feature of this model is its modularity. Each “triangle”
generates and completely controls its own transmission zero.

The model shown in Fig. 2(a) can be extended to elliptic
filters of arbitrary orders by cascading as many singlets as
needed. Additional poles at infinity, if present, can be generated
by adding directly coupled resonators in cascade. For example,
the coupling and routing scheme of a filter of order 3 with two
transmission zeros at finite frequencies is shown in Fig. 3.

We refer to the model shown in this figure as the NRNM. Note
that theNRNMmaycontainanarbitrarynumberofnonresonating
nodes(NRNs)tobettercontrol thesignalflow,especiallythestop-
band of the filter. Only two NRNs are used in Fig. 3.

IV. RESULTS AND VALIDATION

Two singlets were cascaded to design the previously specified
second-order elliptic filter. The coupling and routing scheme is
that of Fig. 2(b).

A coupling matrix for this structure can be extracted using
the technique in [5] with proper extension to handle NRN’s. A
possible solution is given by

(2)

Fig. 4. Transmission and reflection coefficient of two cascaded singlets
yielding a symmetric response. Solid lines: full wave (CIET), dashed lines:
coupling matrix (2).

Fig. 5. Effect of moving the input coupling aperture of two cascaded singlets.
One transmission zero remains unaffected.

It is very important to keep in mind that the third diagonal el-
ement is not only constant but does not contribute a frequency
term when the scattering parameters are evaluated. The normal-
ized frequency does not appear in the third diagonal element of
the matrix [A] in equation (4) in [5].

The —mode resonance of a rectangular cavity is used
to implement the two resonators. The bypass coupling of each
resonator exploits the propagating but nonresonating of
each cavity. A capacitive iris, in which the mode is prop-
agating but nonresonating, is placed between the two cavities.
The actual design of the structure is not detailed here for lack of
space.

The response of the designed filter is shown in Fig. 4 as the
solid line. The dashed lines show the response of the coupling
matrix in (2). It is very clear that the two results agree very well
in the vicinity of the passband. The differences over a wider
frequency range are attributed to parasitic effects.

To confirm the modularity of the design, the position of the
input aperture was moved up and down without changing any
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Fig. 6. Reflection and transmission coefficients of two cascaded singlets in
two-layer microstrip technology. Solid lines: full-wave (IE3D), dashed lines:
coupling matrix.

other parameters in the structure. This displacement changes the
coupling from the source to resonator 1 but does not affect the
bypass coupling to the NRN since the field distribution of the

does not depend on y whereas that of is an odd
function of y with respect to the center of the cross section of
the cavity. (Here, y is the coordinate along the small dimension
of the cross section of the waveguides).

The results of this numerical experiment are shown in Fig. 5.
It is evident that one of the transmission zeros remains unaf-
fected while the second one is even moved to the other side
of the passband. The two transmission zeros are independently
controlled; they cannot be the result of the source-load coupling
of the existing models.

Fig. 6 shows the reflection and transmission coefficients of
a two-layer filter in microstrip technology. The nonresonating
node is implemented as a small conducting plate whose resonant
frequency is very large compared to the center frequency of the
filter. The two resonators are microstrip lines which are half a
wavelength long at the center frequency of the filter. The feeding
microstrip lines are edge coupled to the two resonators. The
input and output as well as the two resonators are coupled to the
nonresonating node which is between the microstrips and the
ground plane. A top view of the layout of the filter is shown in
the inset of Fig. 6. The filter was designed using the commercial
package IE3D of Zeland Software. Its response agrees well with
that of an extracted NRNM coupling matrix (not shown) in the
vicinity of the passband and the transmission zeros. The low
frequency deviation between the two results is partly due to the
NRN.

The next example is a fourth-order elliptic filter with four
transmission zeros implemented using -mode cavities
(inset of Fig. 7) as in the two cascaded singlets discussed before.

Fig. 7. Measured (+) and simulated (�) response of a fourth-order elliptic
filter implemented by cascading four singlets in TM -mode rectangular
cavities.

The simulated ( Wave Wizard) and measured responses of the
filter are shown in Fig. 7. The two results agree very well. The
measured insertion loss is less than 0.4 dB over a 700-MHz
bandwidth.

V. CONCLUSION

A novel model for modular design of advanced elliptic and
pseudo-elliptic filters is presented. The singlet is introduced
as the most basic building block for modular design of elliptic
and pseudo-elliptic filters. The NRNM is introduced to accu-
rately model cascaded singlets and increase the flexibility and
modularity of elliptic filter design. Example filters based on
this model were designed and their responses are shown to
agree with measurement. Naturally, nonresonating nodes may
be added to other filtering networks, they are not limited to the
case of cascaded singlets.
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