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Design of Reactive Parasitic Elements in Electronic
Beam Steering Arrays
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Abstract—A new approach for the design of electronic beam
steering arrays with reactive parasitic elements is introduced. The
method is demonstrated at the example of a circular array formed
by capacitively tuned monopoles. The related capacitances are
determined straightforwardly and without any need for optimiza-
tion techniques. The resulting beams are rotatable and maintain
their gain and beamwidth within tight margins. Comparisons with
NEC2 verify the pattern calculation.

Index Terms—Beam steering, circular arrays, parasitic an-
tennas, phased arrays.

I. INTRODUCTION

E LECTRONIC beam steering is frequently used in mobile
applications to enhance spectrum efficiency as well as to

reduce problems associated with multipath propagation. Recent
results in information theory have demonstrated an enormous
potential for channel capacity of wireless systems with multiple
antennas at both the transmitter and the receiver, e.g., the
so-called multiple-input multiple-output (MIMO) systems [1].
Antenna beam forming networks (BFNs) have been mostly
implemented by digitally based architectures. The digital beam
forming (DBF) architecture [2] offers several functionalities
like programmable control of antenna radiation pattern, direc-
tion-of-arrival (DOA) estimation and adaptive steering of the
transmitting antenna beam to enhance the signal-to-interfer-
ence-noise ratio (SINR). An unfortunate aspect of these digital
architectures is the high cost of employing a radio receiver for
each antenna element, thus resulting in relatively high losses in
the respected feed circuits.

Theanalogapproach,ontheotherhand,isre-emergingtocreate
an alternative architecture of adaptive array antennas. The history
ofpracticalanalogbeam-formingantennasdatesbacktotheButler
matrix [3],whichconsistsofhybridsasfixedphaseshifters.Since
beamsteeringisoperatedbyemployingselectiveRFswitches, the
steering angle is only discrete. An alternative approach for beam
steering using varactor-tuned passive radiators is proposed in [4].
Compared to the Butler matrix method, the variable beam direc-
tion in this approach can have a higher resolution in the beam di-
rection. The proposed beam forming approach utilizes one active
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Fig. 1. Basic antenna arrangement consisting of quarter-wavelength
monopoles equally spaced at a quarter-wavelength from the center monopole.

and multiple passive radiators. By adding varactors to the passive
radiators, beam steering is facilitated by controlling the phases of
the currents in the passive radiators. To estimate the value of the
capacitances required to focus the beam in a particular direction,
optimizationtechniquesareemployed[5].However,optimization
schemes have many drawbacks, such as convergence and excess
time frames toward a final design.

Therefore, this paper focuses on an analytical design ap-
proach for computing the capacitances required in general
arrays using tunable parasitic elements.

II. FORMULATION

Fig. 1 shows the basic arrangement of the proposed
beam-forming scheme with parasitic elements. To demon-
strate the proposed technique, we first consider a circular array
of six parasitic elements and an active radiator at the center. Each
element consists of a quarter-wavelength vertical monopole
fixed to a base plate and a variable capacitor. For far-field anal-
ysis using image theory, each reactive monopole is treated as a
dipole with a center capacitor. The active radiator is connected
to a voltage source. The radiators are assumed to be wires of
diameter and are located at a radius of around the
center element. Assuming for simplicity that the center element
is surrounded by six parasitic elements, then the basic antenna
arrangement can be representedasaseven-portnetworkas shown
in Fig. 2.

Including mutual coupling between the elements, the equa-
tion for the center element is represented by

(1-a)

whereas that for the parasitic elements is

(1-b)
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Fig. 2. Seven-port network representing the basic antenna arrangement of
Fig. 1.

The electric far field is represented by

(2)

where represents the element factor, denote the angular
positions of the elements, and and the currents and phases,
respectively, obtained from classical circular array theory, e.g.,
[6]. The array factor is mainly dominated by the dipole currents,
which depend on the impedance matrix and the capacitances, as
well as on the voltage source of the active dipole.

Based on the fact that the current is a nonlinear function of the
reactances and that the capacitances must be realizable

, the phase control of the parasitic radiators is crucial. The
required phase excitations of each dipole can be determined
by the array factor to direct the main beam in a certain direction.
However, the array factor neglects mutual coupling.

Therefore, the task is to replace and by the actual com-
plex currents and, hence, reproduce the array factor including
the mutual interactions of the elements. Moreover, to maximize
the output signal in a desired direction, we will solve for capac-
itances in an efficient and straightforward way and without
any use of lengthy optimization algorithms. In order to achieve
this goal, we first represent the complex currents by their am-
plitudes and phases

(3)

and rearrange (1), e.g., for passive elements.

(4)

It is obvious that the amplitudes of the passive radiators will
be smaller than that of the center active one and that they differ
due to the different capacitances at their bases. The current in
the active radiator due to the voltage source and under the
influence of mutual coupling can be written as in (5), shown at
the bottom of page. Now, the framed part of (4) is rearranged as

(6)

Using the fact that the term in parenthesis is purely imaginary,
we write

(7)

and, since , we obtain

(8)

Similarly, we arrange all equations within the framed part of (4),
as shown in (9) at bottom of the page. By inserting (5) into (9),

(5)

...

. . .
...

. . .
...

. . .
...

(9)



2000 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 6, JUNE 2005

we obtain vector as

(10)
vector follows from (9), and matrix is shown in (11) at the
bottom of the page. By inverting , the amplitudes of the cur-
rents are determined and are used to estimate . How-
ever, some of the so-obtained capacitances may be negative due
to the fact that for a desired beam direction, the parasitic ele-
ments located in that direction act as directors (capacitive) while
those in the opposite direction represent reflectors (inductive).
In order to make the capacitances realizable , we use
the phase of the center element to obtain a modified set of ca-
pacitances under the condition that the electric field in the spec-
ified direction be maximized

(12)
Note that after the new set of ’s is determined, the actual phase
of the feeding element is irrelevant for the far-field pattern of the
array; in other words, the phases are normalized to that of the
feeding element.

III. RESULTS

In order to validate the far-field calculations, the radiation pat-
terns and maximum E-fields of a system with six parasitic ele-
ments are presented. The radius of each radiator is assumed to
be , and the frequency is 2.484 GHz. The results obtained
with our in-house code are compared with those of the Numer-
ical Electromagnetics Code NEC2. Fig. 3 demonstrates that the
results are in excellent agreement. The maximum E-fields are
calculated as 2.3 V/m (this method) and 2.2 V/m (NEC2).

By solving for the capacitances as outlined in the previous
section, the beam can be rotated. Table I shows the various pa-
rameters of the patterns obtained for beams positioned at every

Fig. 3. Principal plane E-field amplitude pattern (� = �=2) for the beam
focused in 300 position.

15 in the azimuth plane. Although a maximum E-field and di-
rectivity are only achieved in the exact direction of a parasitic el-
ement (multiples of 60 in Table I), the respective E-field values
( in Table I) drop only very slightly in directions any-
where between the element locations. It has even been demon-
strated (not shown here) that on a one-degree resolution and
a tolerance level of 0.1 pF for the capacitances, the minimum
E-field in the direction of the beam will never drop below 85
percent of the maximum possible E-field .

One of the advantages of this method is the fact that during
the calculation of the final set of capacitances, the minimum and
maximum realizable capacitances as well as their accuracies can
be specified. Table II lists the final values obtained for the direc-
tions given in Table I and the following conditions for the ca-
pacitances: , , .
The resulting far-field patterns are shown in Fig. 4. Note that the
structure is six-fold symmetric and, therefore, only one sixth of
the patterns and capacitances are reported here. The remaining

...
. . .

...

...
. . .

...

(11)
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TABLE I
NUMERICAL RESULTS FOR SIX PARASITIC ELEMENTS

TABLE II
CAPACITANCES IN pF. DESIGN PARAMETERS SET TO: C = 0:1 pF, C = 0:1 pF, C = 10:0 pF. MONOPOLE 1 IS POSITIONED AT

60 ; OTHERS FOLLOW AT 60 INTERVALS

Fig. 4. Antenna patterns computed using six elements for beam pointing directions every 15 ; e.g., in directions of 60 , 45 , 30 , and 15 .

sets follow straightforwardly from rotating patters and capaci-
tances by increments of 60 . Note that the maximum side lobe
level in Fig. 4 is 14 dB which shows very good beam com-
pression.

Since the method is not restricted to a certain number of el-
ements, we present some sample beam patterns for nine and
twelve parasitic elements in Figs. 5 and 6, respectively. They
have been calculated under the same restrictions for capacitance
values as those in Table II. It is obvious that the beam pattern is
not compromised by a higher number of elements and that the
number of solutions with a maximum E-field increases with the
number of elements. For all practical applications, though, six
parasitic elements will suffice.

IV. CONCLUSION

The design of electronic beam steering arrays with parasitic
elements is simplified through a straightforward calculation of
the capacitances connected to the passive radiators. By solving
separately for the amplitudes and phases of the currents in the
parasitic elements, an analogue approach is obtained which
reliably, and without any optimization, solves for a set of ca-
pacitances required to steer the beam in a specified direction.
Moreover, the algorithm allows restraints to be set on the limits
and accuracy of capacitance values which will ease require-
ments for practical implementations. It is demonstrated that
the beamwidth and directivity are maintained (within small
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Fig. 5. Radiation patterns calculated using an array of 9 elements for beam pointing directions every 20 ; e.g., in directions of 80 , 60 , 40 , and 20 .

Fig. 6. Radiation patterns calculated using an array of 12 elements for beam pointing directions every 15 ; e.g., in directions of 60 , 45 , 30 , and 15 .

margins) if the beam is rotated. Although the number is arbi-
trary, six parasitic radiators appear to be sufficient for wireless

applications. Comparisons with NEC2 verify the pattern cal-
culation.
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