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Classical eigenvalue mode-spectrum analysis of multiple-ridged
rectangular and circular waveguides for the design

of narrowband waveguide components
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SUMMARY

A classical eigenvalue mode-spectrum analysis of waveguides with multi-ridged cross sections is presented
and applied to the design of narrowband waveguide components in rectangular and circular waveguide
technology. Modifications of the modes of the empty waveguide enclosures are used as expansion functions
and lead to a classical, real and symmetric eigenvalue problem. A simple yet efficient constraint function is
introduced to satisfy boundary conditions for TM modes. The number and locations of ridges positioned
in a regular rectangular or circular waveguide enclosure is arbitrary. Measurements and comparisons with
results from existing full-wave modeling tools and commercially available field solvers verify the
correctness and flexibility of the approach. Copyright r 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Waveguide components in advanced satellite and communications systems as well as base-
station equipment have utilized waveguides with nonstandard cross sections for a long time.
Such cross sections typically include a variety of ridges in either rectangular enclosure, e.g.
multiple-ridged waveguides [1–6], T-septum waveguides [6–9], L-shaped waveguides [10], trough
waveguides [11], or in circular housings, e.g. multiple-ridged circular waveguides [1,5,12–15],
and corrugated circular waveguides [16,17]. Moreover, a number of more arbitrarily shaped
cross sections are frequently employed [18–21]. In order to incorporate such irregular
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waveguides into computer-aided design procedures for narrowband waveguide components,
their mode sequences and related expansion coefficients must be known.

A popular approach to determine the modal distribution of irregular waveguides is to
subdivide the cross section into subregions, e.g. [3–13,15], which leads to a singular-value
problem requiring the system determinant or, alternatively, the smallest singular value to
vanish [9]. However, this method has several disadvantages. Firstly, it requires a search
algorithm to determine the mode spectrum, which is computationally expensive and lacks
accuracy, especially if cut-off frequencies of modes are located very close together or are even
identical within the smallest variation acceptable in the search. Secondly, if the cross-sectional
dimensions are varied within an optimization run, the boundary conditions with respect to the
subdivisions might change, thus requiring that the altered configuration be solved and coded
separately. Thirdly, using different subdivision schemes, e.g. horizontal versus vertical, leads to
slightly different results for an entire waveguide component containing such cross sections. This
is demonstrated in [11]. It is therefore advisable to develop a method that refrains from dividing
the entire cross section into subregions.

This is accomplished by setting up a classical eigenvalue formulation, e.g. [19,22–24], and
selecting appropriate basis functions. The mode-matching-finite-element method, e.g. [25], is
especially useful in this respect. One issue to consider, though, is whether or not the resulting
eigenvalue equation requires complex arithmetic to be applied to asymmetric matrices. In this
respect, the approach presented in [26–29] is advantageous since the resulting matrices are real
and symmetric, and, in addition, the approach is easily combined with the three-dimensional
mode-matching technique (MMT). However, the basis functions used in [26–29] are
polynomials involving the computation of Gamma functions, which limits efficient code
implementation. Therefore, only simple discontinuities have been presented so far [29] as they
require only a limited number of eigenmodes to be considered in the irregular cross sections. For
narrowband and highly frequency-dependent waveguide components, however, it is mandatory
to compute reliably the cut-off frequencies and expansion coefficients of hundreds of modes in
such cross sections.

Therefore, this paper focuses on a combination of the approaches used in [23] and [26–29].
We use the eigenmodes of the empty waveguide enclosures as basis functions, as proposed in
[23], but refrain from limiting the numbers and locations of ridges by introducing edge
conditions. And we apply the formulation of [26–29] in order to obtain a numerically friendly
classical, real and symmetric eigenvalue equation. The only challenge is a constraint function to
enforce the boundary condition for TM modes. However, as we demonstrate in the next section,
this can be achieved straightforwardly and in a flexible yet easily implementable manner.

Moreover, the new eigenvalue mode-spectrum analysis has the following advantages: First,
the number of ridges and their locations within a waveguide housing is arbitrary, and a division
into subregions is not required. Second, all inner product calculations can be performed over the
surface areas of the ridges so that integration over the actual, more complicated cross section of
the irregular, multiple-ridged waveguide becomes unnecessary. Third, the power normalizations
of the multi-ridged waveguide modes follow directly from the eigenvalue solutions and need not
be recomputed. Fourth, two submatrices of the coupling matrix to the empty waveguide
enclosure follow straightforwardly from the eigenvalue solutions. Only TM-to-TE-mode
coupling must be recomputed.

This paper focuses on a more detailed description of the method compared with a recent
conference contribution [30]. Moreover, we present convergence behavior, a number of new and
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numerically more challenging examples and, for the first time, the related algorithm in the
circular–cylindrical coordinate system including three examples.

2. THEORY

Figure 1 shows general cross sections of ridges in rectangular (Figure 1(a)) and circular (Figure 1(b))
waveguide housings. We restrict our investigations to structures involving pure TE and TMmodes so
that individual ridges must either share a common wall with the housing, or they are connected to
each other with at least one of them connected to the housing.

Following the general approach presented in [26–29], we obtain the mode spectrum from

H2
T

Hz

Ez

( )
þ k2c

Hz

Ez

( )
¼ 0 ð1Þ

where HT is the transverse Laplacian operator, kc are the eigenvalues to be determined, and Hz,
Ez are the longitudinal field components of TE and TM modes, respectively. As we will
demonstrate in the following subsections, the z components are expanded in basis functions,
which either coincide with the eigenmodes of the waveguide enclosure (TE modes) or are
modifications thereof (TM modes).

Hz

Ez

( )
¼
XP
p¼1

cp
hzp

ezp

( )
ð2Þ

After testing (2) with the respective TE- or TM-mode spectra of the waveguide housing and
truncating the series, a generalized eigenvalue equation is obtained.

½K�c ¼ k2c ½M�c ð3Þ

Figure 1. Cross sections of multiple ridges in rectangular waveguides: (a) four ridges in rectangular
waveguide and (b) two ridges in circular waveguide.
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Diagonal matrix kc holds P eigenvalues, which specify the first P cut-off frequencies fcp.
Matrix c holds the corresponding eigenvectors. The matrix elements of K and M in (3) represent
the inner products of the modes of the housing (Tp) with the expansions in (2).

Kpq ¼
Z
S

HT
Thp

Tep

� �
HT

hzq
ezq

� �
ds ð4aÞ

Mpq ¼
Z
S

Thp

Tep

� �
hzq
ezq

� �
ds ð4bÞ

Here, S represents the cross section of the irregular (ridged) waveguide. However, in order to
maintain flexibility of the positions of all ridges, all surface integrals are computed as the
difference between those over the empty housing and those over the N ridges within that
housing. Z

S

fðsÞ ds ¼
Z
housing

fðsÞ ds �
XN
i¼1

Z
ridgeðiÞ

fðsÞ ds ð5Þ

Once the eigenvalues and eigenvectors are obtained from (3), each mode i of the multiple-
ridged waveguide can be power normalized as required for a MMT computation in axial (z)
direction.

Pi ¼ k2ci

XP
p¼1

Mipc
2
ip ð6Þ

As MMT routines are based on mode coupling between the modes of the empty
waveguide and those of the ridged waveguide, a frequency-independent coupling matrix of
the form

J ¼
Jhh 0

Jeh Jee

" #
ð7Þ

must be set up. It is one of the advantages of using empty waveguide modes as expansion
functions that submatrices Jhh and Jee are directly obtained from (4a).

ðJhhÞq;i ¼ Aq

XPh

p¼1

ðKhÞipðchÞip ð8aÞ

ðJeeÞq;j ¼ Dq

XPe

p¼1

ðKeÞjpðceÞjp ð8bÞ

Note that in (8), we have acknowledged the fact that the number of expansion terms P used
in (2) are normally different for TE (Ph) and TM (Pe) modes with eigenvector matrices ch and ce,
respectively. Aq and Dq are the well-known power normalization terms of the empty waveguide
housing.

2.1. Multi-ridged rectangular waveguides

Following Figure 1(a), we assume that the housing contains N ridges and that their space within
the cross section is defined by its lower-right coordinates (ei, di) and surface areas wi� ti.
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In order to determine the TE modes of the multi-ridged waveguide, the expansion functions are
identical to the modes of the housing.

hzpðm;nÞ ¼
cos

mp
a

x
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0m

p cos
np
b
y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0n

p ð9Þ

Note that (9) satisfies all boundary conditions (d0k is the Kronecker delta) for TE modes so
that matrices Kh and Mh are computed straightforwardly. Using (5), and substituting kxi, kyi
(m,n-i) and kxj, kyj (l,k-j) for the separation constants in (9), we obtain

ðKhÞi;j¼½k
2
xi þ k2yi�

ab

4
�kxikxj

XN
n¼1

Z enþwn

en

sin ðkxixÞ sin ðkxjxÞ dx
Z dnþtn

dn

cos ðkyiyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kyi

p cos ðkyjyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kyj

p dy

( )

� kyikyj
XN
n¼1

Z enþwn

en

cos ðkxixÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kxi

p cos ðkxjxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kxj

p dx

Z dnþtn

dn

sin ðkyiyÞ sin ðkyjyÞ dy

( )
ð10aÞ

ðMhÞi;j ¼
ab

4

�
XN
n¼1

Z enþwn

en

cos ðkxixÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kxi

p cos ðkxjxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kxj

p dx

Z dnþtn

dn

cos ðkyiyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kyi

p cos ðkyjyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kyj

p dy

( )
ð10bÞ

Note that index n is used twice indicating not only the separation constant in y direction but
also the number of the ridge. Therefore, we use only indices i, j in (10) and following matrix
notations.

In order to determine the TM modes of the multi-ridge structure, we cannot directly use the
eigenmodes of the empty waveguide housing as expansion functions since they do not satify the
boundary conditions. Therefore, empty waveguide TM modes must be modified so that they are
forced to vanish over the cross sections of the ridges. This is accomplished by a negative
rectangular step function, which is defined as

U
x� x0
Dx

;
y� y0
Dy

� �
¼

0
x0pxpx0 þ Dx

y0pypy0 þ Dy

(

1 elsewhere

8>><
>>: ð11Þ

and enables us to set to zero ezp in (2) over the surface of the ridges.

ezpðl;kÞ ¼ sin
lp
a
x

� �
sin

kp
b
y

� � YN
n¼1

U
x� en
wn

;
y� dn
tn

� �
ð12Þ

Note that the derivatives of (12) lead to delta functions. However, they are only required to
compute matrix K in (4a) and, thus, appear under an integral where applications of the sifting
theorem can be used.

After substituting kxj, kyj (l,k-j) and kxi, kyi (m,n-i) for the separation constants in (12) and
performing the related operations, the matrices K and M for TM modes in a multi-ridged
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waveguide are obtained as

ðKeÞi;j ¼½k
2
xi þ k2yi�

ab

4
þ ðKedÞi;j

� kxikxj
XN
n¼1

Z enþwn

en

cos ðkxixÞ cos ðkxjxÞ dx
Z dnþtn

dn

sin ðkyiyÞ sin ðkyjyÞ dy
� �

� kyikyj
XN
n¼1

Z enþwn

en

sin ðkxixÞ sin ðkxjxÞ dx
Z dnþtn

dn

cos ðkyiyÞ cos ðkyjyÞ dy
� �

ð13aÞ

ðMeÞi;j ¼
ab

4
�
XN
n¼1

Z enþwn

en

sin ðkxixÞ sin ðkxjxÞdx
Z dnþtn

dn

sin ðkyiyÞ sin ðkyjyÞ dy
� �

ð13bÞ

Note that matrix Ked in (13a) is related to applying the sifting theorem in (4a). It contains
combinations of the line integrals on the surface of the ridges in one direction multiplied by the
terms from the sifting theorem in the respective other direction.

ðKedÞi;j ¼
XN
n¼1

fsin ðkxienÞ sin ðkxjenÞ þ sin ðkxiðen þ wnÞÞ sin ðkxjðen þ wnÞÞ:

þ kxjð� sin ðkxienÞ cos ðkxjenÞ þ sin ðkxiðen þ wnÞÞ cos ðkxjðen þ wnÞÞÞ

þ kxið� cos ðkxienÞ sin ðkxjenÞ þ cos ðkxiðen þ wnÞÞ sin ðkxjðen þ wnÞÞÞg

�
Z dnþtn

dn

sin ðkyiyÞ sin ðkyjyÞdy

þ
XN
n¼1

fsin ðkyidnÞ sin ðkyjdnÞ þ sin ðkyiðdn þ tnÞÞ sin ðkyjðdn þ tnÞÞ

þ kyjð� sin ðkyidnÞ cos ðkyjdnÞ þ sin ðkyiðdn þ tnÞÞ cos ðkyjðdn þ tnÞÞÞ

þkyið� cos ðkyidnÞ sin ðkyjdnÞ þ cos ðkyiðdn þ tnÞÞ sin ðkyjðdn þ tnÞÞÞg

�
Z enþwn

en

sin ðkxixÞ sin ðkxjxÞ dx ð13cÞ

This matrix, in combination with (13a), is used in (3) to calculate the TM-mode eigenvalues and
the related eigenvectors.

Figure 2 shows a convergence analysis for rectangular waveguides with four ridges and
comparison with fundamental-mode measurements of [1] (Figure 2(a)) and fundamental-mode
calculations of [10] (Figure 2(b)). The cut-off frequencies of the multi-ridged waveguides are
displayed as a function of the highest cut-off frequency in the housing up to which all terms
(m, n) in (9) and (l, k) in (12) are considered. Good convergence behavior is observed for all
modes in Figure 2. Obviously, the two-plane symmetric structure in Figure 2(a) requires fewer
expansion terms as the symmetry also affects the number of symmetric terms in the expansions.
The asymmetric cross section in Figure 2(b) requires all asymmetric expansion terms and,
therefore, their numbers are much higher. Of specific interest for later three-dimensional
analysis is the fact that modes with almost identical cut-off frequencies, e.g. the 2nd, 3rd and
5th, 6th TE modes in Figure 2(b), are accurately computed. Such cases have always caused
problems in mode-search algorithms that require a system determinant to vanish, e.g. [3–13].
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The last step towards a three-dimensional MMT analysis is the computation of the coupling
matrix in (7). Whereas Jhh is straightforwardly obtained from (8a), a simple modification is
required for Jee in (8b). Here Ke differs from that in (13a) since Ked is zero. This is due to the fact
that the sum of the housing’s TM modes forces the transverse electric field to vanish on the face
of the ridges.

Finally, coupling submatrix Jeh that relates the housing’s TM modes (index e) to the multi-
ridged waveguide’s TE modes (index h), is given by

ðJehÞq;i ¼ Dq kxeq
XPh

p¼1

kyhpðchÞip
XN
n¼1

Z enþwn

en

cos ðkxeqxÞ
cos ðkxhjxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kxhj

p dx

Z dnþtn

dn

sin ðkyeqyÞ sin ðkyhjyÞ dy

(

�kyeq
XPh

p¼1

kxhpðchÞip
XN
n¼1

Z enþwn

en

sin ðkxeqxÞ sin ðkxhjxÞdx
Z dnþtn

dn

cos ðkyeqyÞ
cos ðkyhjyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0kyhj

p dy

)

ð14Þ

From here on, standard MMT procedures are applied to obtain the overall modal scattering
matrices of waveguide components involving multiple ridges.

2.2. Multi-ridged circular waveguides

For circular multi-ridged cross sections as depicted in Figure 1(b), the following expansion
functions for TE and TM modes, respectively, are used

hzpðm;nÞ ¼ JmðkchmnrÞ
cos ðmfÞ

sin ðmfÞ

( )
ð15Þ

ezpðl;kÞ ¼ JlðkcelkrÞ
sin ðlfÞ

cos ðlfÞ

( )YN
n¼1

U
r� rn
Drn

;
f� fn

Dfn

� �
ð16Þ

Figure 2. Convergence analysis of quadruple-ridged rectangular waveguides in symmetric (a) and
asymmetric (b) configuration.
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where J denotes Bessel functions of the first kind, kch,e are the well-known cut-off wavenumbers
in the empty housing, and function U is the circular equivalent to (11). The K and M matrices
used in (3) are (m,n-i; l,k-j).

For TE modes

ðKhÞi;j ¼
1

A2
i

� kchikchj
XN
n¼1

Z rnþDrn

rn

J
0

mðkchirÞJ
0

lðkchjrÞr dr
Z fnþDfn

fn

cos ðmfÞ

sin ðmfÞ

� �
cos ðlfÞ

sin ðlfÞ

� �
df

( )

�ml
XN
n¼1

Z rnþDrn

rn

JmðkchirÞJlðkchjrÞ
dr
r

Z fnþDfn

fn

sin ðmfÞ

cos ðmfÞ

� �
sin ðlfÞ

cos ðlfÞ

� �
df

( )

ð17aÞ

ðMhÞi;j ¼
1

ðAikchiÞ
2

�
XN
n¼1

Z rnþDrn

rn

JmðkchirÞJlðkchjrÞrdr
Z fnþDfn

fn

cos ðmfÞ
sin ðmfÞ

� �
cos ðlfÞ
sin ðlfÞ

� �
df

( )

ð17bÞ

where indices m, l are the respective orders of Bessel functions appearing in orders i, j of
increasing wavenumbers of the circular housing, the prime denotes the derivative with respect to
the argument, and Ai is the normalization coefficient

Aði!m;nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1þ domÞ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
02
mn �m2

p
Jmðx

0

mnÞ
ð17cÞ

with x’mn being the nth zero of the derivative of Jm.
For TM modes, we obtain

ðKeÞi;j ¼
1

D2
i

� ðKedÞi;j

� kceikcej
XN
n¼1

Z rnþDrn

rn

J
0

mðkceirÞJ
0

lðkcejrÞrdr
Z fnþDfn

fn

sin ðmfÞ

cos ðmfÞ

� �
sin ðlfÞ

cos ðlfÞ

� �
df

( )

�ml
XN
n¼1

Z rnþDrn

rn

JmðkceirÞJlðkcejrÞ
dr
r

Z fnþDfn

fn

cos ðmfÞ

� sin ðmfÞ

� �
cos ðlfÞ

� sin ðlfÞ

� �
df

( )

ð18aÞ

ðMeÞi;j ¼
1

ðDikceiÞ
2

�
XN
n¼1

Z rnþDrn

rn

JmðkceirÞJlðkcejrÞr dr
Z fnþDfn

fn

sin ðmfÞ
cos ðmfÞ

� �
sin ðlfÞ
cos ðlfÞ

� �
df

( )
ð18bÞ

Dði!m;nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1þ domÞ

s
1

xmnJmðxmnÞ
ð18cÞ
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with xmn being the nth zero of Jm. Matrix elements (Ked)i,j in (18a) are given as

ðKedÞi;j ¼
XN
n¼1

frnðJmðkceirnÞJlðkcejrnÞ � kcejJmðkceirnÞJ
0

lðkcejrnÞ � kceiJ
0

mðkceirnÞJlðkcejrnÞ

þ ðrn þ DrnÞJmðkceiðrn þ DrnÞÞJlðkcejðrn þ DrnÞÞ

� ðrn þ DrnÞkcejJmðkceiðrn þ DrnÞÞJ
0

lðkcejðrn þ DrnÞÞ

� ðrn þ DrnÞkceiJ
0

mðkceiðrn þ DrnÞÞJlðkcejðrn þ DrnÞÞg

�
Z fnþDfn

fn

sin ðmfÞ

cos ðmfÞ

� �
sin ðlfÞ

cos ðlfÞ

� �
df

þ
XN
n¼1

sin ðmfnÞ

cos ðmfnÞ

� �
sin ðlfnÞ

cos ðlfnÞ

� �
� l

�
sin ðmfnÞ

cos ðmfnÞ

� �
cos ðlfnÞ

� sin ðlfnÞ

� �

�m
cos ðmfnÞ

� sin ðmfnÞ

� �
sin ðlfnÞ

cos ðlfnÞ

� �
þ

sin ðmðfn þ DfnÞÞ

cos ðmðfn þ DfnÞÞ

� �
sin ðlðfn þ DfnÞÞ

cos ðlðfn þ DfnÞÞ

� �

þ l
sin ðmðfn þ DfnÞÞ

cos ðmðfn þ DfnÞÞ

� �
cos ðlðfn þ DfnÞÞ

� sin ðlðfn þ DfnÞÞ

� �

þm
cos ðmðfn þ DfnÞÞ

� sin ðmðfn þ DfnÞÞ

� �
sin ðlðfn þ DfnÞÞ

cos ðlðfn þ DfnÞÞ

� ��Z rnþDrn

rn

JmðkceirÞJlðkcejrÞ
dr
r

ð18dÞ

Note that what was stated for rectangular multi-ridges regarding matrices Jee, Ke and Ked,
applies in the same way to the circular multi-ridge case. Finally, the coupling submatrix Jeh is
computed from

ðJehÞq;i ¼Dq kceq
XPh

p¼1

lðchÞip
XN
n¼1

Z rnþDrn

rn

J
0

mðkceqrÞJlðkchjrÞ dr

(

�
Z fnþDfn

fn

sin ðmfÞ

cos ðmfÞ

( )
� sin ðlfÞ

cos ðlfÞ

( )
df�m

XPh

p¼1

kchjðchÞip

�
XN
n¼1

Z rnþDrn

rn

JmðkceqrÞJ
0

lðkchjrÞ dr
Z fnþDfn

fn

cos ðmfÞ

� sin ðmfÞ

( )
cos ðlfÞ

sin ðlfÞ

( ))
df

ð19Þ

Of course, the individual sine and cosine functions in (17)–(19) are valid only for their respective
cross-sectional symmetries. For asymmetric circular multi-ridged cross sections such as depicted
in Figure 1(b), all four possible combinations must be considered.

This completes the presentation of the theory. Among the many advantages outlined in the
introduction section, one serious disadvantage of this method must be addressed. With
increasing cross-sectional area occupied by the ridges within the housing’s cross section and with
an increasing number of expansion terms in (2), the symmetric matrices in (4a) and (4b) become
ill-conditioned. As a result, matrix M is no longer positive definite, which can be immediately
detected by an appropriate eigenvalue/vector-solving code. In such cases, an adaptive process
must be used to find a reasonable compromise between accuracy and computational efficiency.
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As an example, consider a rectangular waveguide with aspect ratio a5 2b containing a single
ridge of height b/2 and variable width. As the ridge width increases from a/10 to 2a/3, the
maximum solvable eigenvalue matrix size decreases from above 2000 to 185. Good convergence
is reached at a size of about 300, which can be maintained up to a width of a/3. At a width of
2a/3 and matrix size of 185, the fundamental-mode cut-off frequency is only a single percent
higher than that calculated with a MMT-based singular-value solver.

For all practical applications and certainly for those presented in the next section, eigenmode
solutions converge sufficiently well before this effect comes into play.

3. RESULTS

Before comparing the eigenvalue mode-spectrum analysis of multiple-ridged cross-section
waveguides with other numerical techniques, agreement with measurements is demonstrated.
Figure 3 presents the input reflection coefficient in dB of a back-to-back rectangular-to-ridge
waveguide transformer. The results of our technique (solid line) are in very good agreement with
the MMT (dashed line) and measurements (crosses) presented in [4]. Note that the analysis of
this component requires the computation of six different double-ridge waveguide mode spectra.
Differences between the three results in Figure 4 are small and well below �25 dB; therefore,
they are acceptable in almost all practical applications.

Figure 4 shows the performance of the below-cutoff T-septum waveguide filter at 2.15GHz
as proposed in [6]. Excellent agreement is obtained with the results of an approach that
combines the Coupled Integration-Equation Technique (CIET) with the MMT. Especially the
passband peaks at 7.6 and 7.8GHz are accurately reproduced, which attests to an accurate
calculation of the mode spectrum of the T-septum waveguide sections. Excellent agreement of
the |S11| and group-delay performances between 2GHz and 2.3GHz has already been
documented in [30]. We refrain from repeating these results and refer the reader to [30].

Figure 3. Back-to-back rectangular-to-ridge waveguide transformer: Comparison of the results of this
method (solid line) with those obtained by the MMT (dashed line) and measurements [4].
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As the MMT analysis in axial direction is identical in both methods, only the time for the
computation of the T-septum waveguide mode spectrum and the coupling matrix needs to be
compared. For this structure, the method proposed here runs approximately 2.5 times longer
than the CIET–MMT. This appears to be a disadvantage. However, with comparable effort, our
method produces reliable results for a cross section, in which ridges occupy opposite corners of a
rectangular housing (c.f. inset of Figure 5). A three-dimensional analysis of this twist based
solely on the MMT has not been presented so far as it causes serious numerical complications in

Figure 4. Performance of a below-cutoff T-septum waveguide filter: This method (solid lines),
CIET–MMT (dashed lines) [6].

Figure 5. Performance of a 901 rectangular waveguide twist: This method (solid lines), mWave Wizard
(dashed lines), Ansoft HFSS (dotted lines).
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the power normalization of the individual modes. This is one of the reasons why both
commercial software packages used to verify our results in Figure 5 employ the finite-element
method for the mode-spectrum analysis.

The 901 waveguide twist component shown in Figure 5 is designed for operation between 12
and 13GHz. It must be analyzed/optimized by a full set of modes as its center cross section is
asymmetric. The excellent agreement of our results (solid lines) with those of the mWave
Wizards (dashed lines) and Ansoft HFSSs (dotted lines) demonstrates that our eigenvalue
technique correctly computes waveguide components involving different polarizations. Note
that the twist can also be viewed as a filter, where the two lowest modes in the ridged guide
provide the two resonances at 12.1 and 12.8GHz. The attenuation pole at 14GHz is produced
by bypass coupling from the input to the second resonance, which is identical to that from the
first resonance to the output.

We now turn our attention to circular ridged waveguide components. Figure 6 shows the
performance of a double-ridge waveguide between two standard circular waveguides.
The reflection coefficients for vertical and horizontal polarizations are plotted along with the
phase difference between the two polarizations. This can be achieved by either separately using
the two (cosine and sine) polarizations given in (15)–(19) or by using only one of the two and
performing two separate calculations, with the positions of the ridges rotated by 901 in the
second run. The excellent agreement of our results (solid lines) in magnitude and phase with
those obtained with the MMT (e.g. [13]) validates the eigenvalue analysis for multi-ridged
circular waveguides.

A direct application of the structure in Figure 6 is a circular ridged waveguide polarizer [13]
as shown in Figure 7. The component is designed for operation between 19 and 22GHz with the
following specifications: 30 dB return loss and isolation, 0.75 dB axial ratio. Excellent agreement
of those parameters with results from the MMT is demonstrated and validates the eigenvalue
technique presented here.

The last example, shown in Figure 8, is a four-pole below-cutoff circular ridge waveguide
filter, where the empty circular waveguide sections are used as coupling elements between the

Figure 6. Double-ridge section in circular waveguide: This method (solid lines), MMT (dashed lines).
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ridge waveguide resonators and input/output ports. The Chebyshev-type design features a
500MHz, 22 dB return-loss bandwidth centered at 9.5GHz and shows good stopband behavior
up to 16GHz and beyond. The performance of this filter is validated by results obtained from an
MMT code as used in [13]. Only very slight discrepancies between the two sets of curves are
observed and are attributed to the fact that the number of expansion terms used in the MMT
code had to be limited for numerical stability. Thus, this example shows that the eigenvalue
technique is well suited for ridge waveguide circuit design.

Figure 7. Performance of a circular ridged waveguide polarizer with 11 double-ridge sections: This method
(solid lines), MMT (dashed lines).

Figure 8. Performance of a four-pole below-cutoff circular ridge waveguide filter: This method (solid
lines), MMT (dashed lines).
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4. CONCLUSIONS

The classical eigenvalue mode-spectrum analysis presents a viable alternative for the design of
narrowband waveguide components formed by waveguides involving multi-ridged cross
sections. The theory is presented for multiple ridges in rectangular and circular enclosures. Its
validity is verified by comparisons with mode-matching-based codes, commercially available
full-wave field solvers and measurements. Although this technique is computationally slower
than comparable MMT algorithms, its advantage lies in the flexible selection of all locations and
the number of ridges in a waveguide housing. Therefore, it makes possible the three-dimensional
analysis and design of related components by a strictly modal-based approach and refrains from
introducing hybrid numerical techniques.
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