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Abstract: The theory of vortex electron beam electron energy loss
spectroscopy (EELS), or vortex-EELS for short, is presented. This theory
is applied, using Green function calculations within the finite-difference
time-domain method, to calculate spatially resolved vortex-EELS maps of a
metal split ring resonator (SRR). The vortex-EELS scattering cross section
for the SRR structure is within an order of magnitude of conventional EELS
typically for metal nanoparticles. This is promising in terms of feasibility
for future measurements to map out the local magnetic response of metal
nanostructures and to characterize their magnetic plasmon response in
applications, including metamaterials.
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1. Introduction

The magnetic response of naturally occurring materials is negligible in the visible-IR regime
for fundamental reasons [1]. This severely limits the functionality of optics in that regime:
were a strong magnetic response possible, many applications, such as optical cloaking [2–4]
and perfect lensing [5, 6], could be achievable. It is possible to make the magnetic response
stronger by using artificial metal nanostructures [7–11]. While great strides have been made
towards achieving a stronger magnetic response in the visible regime [12–14], still further work
is required to reduce the resonance wavelength, to increase the strength of the response and to
reduce material losses. To aid in this continuing effort, it is highly desirable to have a tool to
probe the magnetic response of metal nanostructures at the nanometer scale.

Electron energy loss spectroscopy (EELS) has long been used to probe the response of mat-
ter [15–18]. For example, the experimental measurement of a surface plasmon is commonly
performed by EELS [19–21]. More recently, EELS has allowed for mapping out the electronic
response of metal nanostructures, allowing for the probing of the distribution of localized sur-
face plasmons [22–27]. Of particular interest, EELS can probe dark modes that are not coupled
to radiation and cannot be measured with conventional methods [28].

Here, we propose using the well-established tool of electron energy loss scattering, but with
the twist of vortex electron beams, or vortex-EELS, to map out the magnetic response of ma-
terials at the nanometer scale. Vortex electron beams have recently been demonstrated using
diffractive phase-plates in transmission electron microscope setups [29, 30]. These electron
beams possess orbital angular momentum (OAM), which has proven to be extremely useful in
the field of optics [31, 32].

In this work, we show that these vortex electron beams provide an opportunity for mapping
out the near-field magnetic response of metal nanostructures. First we present a semi-classical
theory that shows how the spiraling electron trajectory creates a moving effective magnetic
charge, which in turn can be used to probe the magnetic response of metal nanostructures at
the nanometer scale. We present example calculations for the well-known split ring resonator
(SRR) metal nanostructure, which show that the scattering signal achieved from vortex-EELS
is within an order of magnitude of conventional EELS. These findings are extremely promising
for future work to map out the local magnetic response at the nanometer scale.

2. Vortex-EELS Theory

The vortex-EELS theory is similar to past approaches to EELS that consider the energy loss
from a moving point electron charge [33], except that here we consider a spiraling trajectory.
This spiraling trajectory creates a magnetic current, that can be thought of as arising from a
moving magnetic charge. Here we show how the magnetic charge and magnetic current density
is related to the angular momentum and the trajectory of the electron beam. We then show how
the energy loss spectrum can be obtained from the magnetic Green function that is induced
from the magnetic charge.

2.1. Effective Magnetic Charge

The electron spiral has radius of a, while moving with constant velocity in the z-direction of vz.
The total electron velocity is

vvv =−vθ
y
a

x̂+ vθ
x
a

ŷ+ vzẑ, (1)
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where x̂ is the x-directed unit vector. The electron current density is given by:

jjje(rrr, t) =−eδ [rrr− rrre (t)]vvv, (2)

where e is the magnitude of the electron unit charge, rrre(t) is the electron position as function
of time and δ is the Dirac delta function. The magnetic current density is given by

jjjm(rrr,ω) =
−i

ωε0
∇× 1

εεεr(rrr,ω)
jjje(rrr,ω), (3)

where i =
√−1 and ω is the angular frequency of the spiral. ε0 and εεεr(rrr,ω) are the free-space

and relative permittivities, respectively. Further description about the origin of this equation
is given in the Appendix and the free space version is discussed elsewhere [34]. The electric
current has angular momentum along z axis, so that

(∇× vvv) · ẑ = 2
a

vθ . (4)

To find vθ , we use the angular momentum given by

Lz = mavθ , (5)

where m is the electron mass. In addition, we use the fact that the vortex beam has quantized
orbital angular momentum given by

Lz = nh̄, (6)

where n is the quantum number and h̄ is the reduced Planck’s constant. Combining these two
equations for the angular momentum gives

vθ =
nh̄
ma

. (7)

We find the magnitude of the effective magnetic charge, em, by writing the magnetic charge
density along z axis as follows:

emδ [rrr− rrre(t)] =
jmz

vz
=

2e
aωε

vθ
vz

δ [rrr− rrre(t)] , (8)

where ε = ε0εr assuming εr is scalar and jmz = jmz (rrr, t) is the z component of magnetic current.
Subsequently, we obtain the effective magnetic charge:

em =
2enh̄

mωεvza2 . (9)

2.2. Vortex-EELS Scattering Loss Probability

The two differences between the present vortex-EELS theory and the conventional EELS the-
ory are that: 1) the effective magnetic charge replaces the electric charge, and 2) the duality of
the electric and the magnetic fields allows any calculation involving electric fields, permittiv-
ities and electric field Green functions to be replaced with magnetic fields, permeabilities and
magnetic Green functions. The energy loss, ΔE, from a scattering object can be found from the
Poynting theorem in the usual way [35], allowing for the inclusion of magnetic current:

ΔE =

∫
jjjm ·HHH inddt =

∫ ∞

0
h̄ω dωΓ(ω) (10)
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where HHH ind is the induced magnetic field from current source and Γ(ω) is the inelastic scattering
probability. Here we use a semi-classical theory that considers a spiral electron particle motion
with quantized angular momentum. We neglect energy loss that would typically result from the
classical description of a spiraling electron beam. A quantum treatment of free electron vortices
has been presented elsewhere [36]. A full quantum model for the electron trajectory, while
interesting, is outside the scope of this first prediction. Past works on EELS have suggested that
the quantum treatment only slightly modifies the quantitative predictions by weighting with the
electron wavefunction magnitude squared [37].
Inserting for jjjm(rrr, t) into Eq. (10), we have

ΔE = emvz

∫
H inddt =

∫ ∞

0
h̄ω dωΓ(ω). (11)

The Fourier transform then gives

HHH ind(rrr, t) =
1

2π

∫
dωe−iωtHHH ind(rrr,ω), (12)

where the property HHH ind(rrr,ω) = [HHH ind(rrr,−ω)]∗ has been used. From this, we find the inelastic
scattering probability, through

Γ(ω) =
em

π h̄ω

∫
dt ℑ

{
e−iωt vz H ind [rrre(t),ω]

}
(13)

where ℑ indicates the imaginary part.

The magnetic field can be obtained from the magnetic Green function (or tensor), GGG
H

,
through

HHH(rrr,ω) =−iωε0

∫
drrr′GGGH

(rrr,rrr′,ω) · jjjm(rrr
′,ω). (14)

Combining this with Eq. (13) and Eq. (8), we find the scattering probability for a given trans-
verse coordinate RRR0 = (x0,y0):

Γ(RRR0,ω) =−e2
mv2

z ε0

π h̄

∫
dtdt ′ ℑ

{
eiω(t ′−t)GH,ind

zz [rrre(t),rrre(t
′),ω]

}
, (15)

where GH,ind
zz = ẑ · ḠH,ind · ẑ; note that the dependence of the loss probability Γ on RRR0 is shown

explicitly, and GH,ind denotes the induced Green-tensor component obtained by subtracting the
free-space Green green function. The Green function is defined in terms of the wave equation
with a delta function excitation:

∇× 1
εεεr(rrr,ω)

∇×GGG
H
(rrr,rrr′,ω)− ω2

c2 GGG
H
(rrr,rrr′,ω) = δ (rrr− rrr′)III, (16)

where III is the unit tensor. This wave equation is derived from the fully vectorial Maxwell
equations, and the corresponding boundary conditions are those of Maxwell equations for an
outgoing wave, for which the Green function goes to zero at infinity. In practice, we calculate
the Green function using numerical computation of the comprehensive Maxwell equations with
a magnetic dipole source in the next section.

Noticing that ze(t) = vzt, the time integral of Eq. (15) can be expressed as an integral along
magnetic charge trajectory, through

Γ(RRR0,ω) =− e2
mε0

π h̄

∫
dzdz′ ℑ

{
eiω(z′−z)/vz GH,ind

zz [(RRR0,z),(RRR0,z
′),ω]

}
. (17)
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Equation (17) is the desired result for our calculations. It remains to calculate the Green function
component Gzz for all positions along the trajectory of the magnetic charge produced by the
vortex electron beam to calculate the vortex-EELS scattering probability. We will do this using
finite-difference time-domain (FDTD) techniques, discussed below.

3. Vortex-EELS for a Split Ring Resonator using FDTD

To quantify the vortex-EELS probability for a nanometric structure, we consider a U-shaped
SRR. Figure 1 shows a schematic of the SRR under consideration. The dimensions shown are
chosen to match a past work [14].

Fig. 1. Schematic of U-shaped split ring resonator showing dimensions and axes.

3.1. FDTD Analysis of the SRR

Figure 2 shows transmission and reflection of an array of the SRRs (see Fig. 1), with peri-
odicity 315 nm along the x-direction and 330 nm along the y-direction. The transmission and
reflection was calculated using FDTD simulations with a normally-incident plane wave source
of x-polarization. The response of gold is taken from experiments [38]. We use a uniform grid
around the nanostructure with mesh size 4 nm in all directions, Bloch boundaries in the x- and
y-directions and perfectly matched layer boundaries in the positive and negative z-direction.
Figure 2 agrees quantitatively with past calculations using the finite element calculation method
for the same structure [14].

3.2. Vortex-EELS Maps for the SRR

Figure 3 shows the vortex-EELS scattering probability for a 100 keV beam with RRR0 =
(0,90 nm), as calculated using Eq. (17). The Green tensor component, Gind

zz , was calculated
using a z-oriented magnetic dipole source in FDTD with perfectly matched layer boundary
conditions, and monitoring the z component of the magnetic field. Simulations were carried
out for 30 positions of the magnetic dipole source positions with a 4 nm spacing. For dipoles
within the lossy material, FDTD properly accounts for regularization of the Green tensor [39].
The radius of the vortex beam is taken to be 1 nm, which has been shown in recent experi-
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Fig. 2. Normal incidence transmission and reflection spectra for horizontal polarization.

ments [30,40]. The topological charge is taken as n = 1. The peak of the electron loss occurs at
0.863 eV, or 1437 nm, which is around the magnetic resonance in Fig. 2.

Fig. 3. Calculated vortex electron beam energy loss scattering probability of the SRR structure in
Fig. 1 for 100 keV beam with transverse co-ordinate RRR0 = (0,90 nm).

Figure 4 shows the vortex-EELS probability map for the energy loss peak at 0.863 eV with
a 100 keV beam. The location of the maximum scattering probability is in the middle of the
SRR, close to the metal edge. An additional video (Media 1) is provided showing the evolution
of the map approaching the resonance.

3.3. EELS Maps for the SRR

Figure 5 shows the conventional EELS scattering probability map of the same SRR structure
for its maximum scattering loss energy of 0.8 eV. This figure was calculated using standard
EELS theory [41] and by moving an electric dipole source over the trajectory of the beam. This
figure is provided to show the different distribution of the EELS and vortex-EELS maps. As
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Fig. 4. Map of vortex-EELS probability as a function of position for the 0.863 eV loss peak and a
100 keV beam. A video (Media 1) showing the vortex-EELS for different loss energies is provided
online.

expected, the EELS map of Fig. 5 shows the same distribution and a similar energy resonance
as previously found for the lowest energy EELS spectrum for a similar SRR structure [42]. This
corresponds to the lowest order plasmonic resonance [43].

For the EELS map, the maximum scattering occurs at the ends of the arms of the SRR struc-
ture. It should be noted that we have validated the quantitative EELS values provided by our
calculation method by reproducing past scattering values, as shown in the Appendix. Although
in many cases having a smaller mesh size will increase the accuracy of FDTD, the local density
of states inside a lossy material is necessarily grid size dependent. This dependence is related
to the breakdown of the dipole approximation. A physically reasonable grid size to choose then
is the comparable to the size of the physical source, in this case the vortex electron beam. In
this way, FDTD calculations can correctly regularize the devergent Green function due to the
finite sized grid inside the lossy structure [39]. Similar techniques are commonly employed
for computing the spontaneous emission rate of a photon source in a lossy medium; one must
model finite size dipoles to have a meaningful (and non-divergent) answer.

4. Discussion

The most encouraging result of the calculations presented in this theoretical work is the finding
that vortex-EELS is within an order of magnitude of the conventional EELS for the same struc-
ture. Since regular EELS has been used extensively to map out the electric response of metal
nanoparticles, this finding is promising for the near-future use of vortex-EELS to map out the
magnetic response. For the SRR, the maximum magnetic response occurs in the region of the
highest magnetic field of the so-called “magnetic plasmon resonance,” which is consistent with
past works on SRR structures [11].

From a theoretical point of view, the magnetic and electric Green functions are actually not
independent. Indeed, they are related through the expression [44]:

ω2

c2 GGG
H
(rrr,rrr′,ω) = [∇rrr×] ·GGGE

(rrr,rrr′,ω) · [∇rrr′×]. (18)

This relation shows that the longitudinal component of the magnetic Green function gives
information about the transverse electric components. Therefore, the combination of EELS
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Fig. 5. Map of EELS probability as a function of position for the 0.8 eV loss energy and a 100 keV
beam. A video (Media 2) showing the EELS for different loss energies is provided online.

and vortex-EELS provides a more complete picture of the electromagnetic response at the
nanoscale. This picture is not entirely complete, however, due to the integration over the path
of the electron beams, but it may suffice to provide greater insight for sufficiently thin and
symmetric structures.

It is worthwhile to mention that the vortex electron trajectory will also have the usual electric
contribution. The vortex-EELS contribution can be separated out by noting the spatial-spectral
vortex-EELS response; that is, the resonances of Figs. 4 and 5 occur at different energies.
Another technique would be to filter the scattered electron beam by its OAM (for example, by
using diffractive or magnetic prisms) if it is has transferred OAM to the SRR, then it will no
longer have OAM.

It should be noted that our calculations of vortex-EELS assumed n = 1 and a = 1 nm, which
is consistent with recent experiments showing subnanometer focusing of vortex beams [45]. It
is possible, however, to increase the effective magnetic charge either by increasing the topolog-
ical charge n (linear dependence) or decreasing the beam size a (inverse square dependence).
Since the magnetic charge is squared in the energy loss calculations, any improvements will be
squared there as well. The increased n has been demonstrated in experiment [40]. It is possible
that improved electron optics will lead to reduced a as well.

Finally, we comment that should vortex-EELS be successfully demonstrated, it will prove to
be a powerful tool to quantify the local magnetic response of metal nanostructures. This is of
interest to many applications; for example, the development of negative index metamaterials
with a stronger response, a lower loss and a shorter wavelength resonance.

5. Conclusions

We have presented the theory of vortex-EELS to map out the magnetic response of a metal
nanostructure at the nanometer scale. Our findings show that with reasonable parameters based
on past experiments, the vortex-EELS signal from a SRR should be within an order of magni-
tude of conventional EELS. Since conventional EELS is performed routinely on metal nanos-
tructures, this is a promising result for future works aimed at improving the magnetic response
of metal nanostructures in the visible regime by obtaining a microscopic picture.
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Appendix

Starting from the full Maxwell equations, assuming μr = 1, one can show

∇×∇×EEE(rrr,ω)− k2
0εεεr(rrr,ω)EEE(rrr,ω) = ε0k2

0 PPPe(rrr,ω) = iωμ0 jjje(rrr,ω), (19)

where PPPe and k0 are the electric polarization and wavenumber. Using an electric-dipole polar-
ization source in the Maxwell equations, it is easy to derive the electric-field Green function
equation:

∇×∇×GGG
E
(rrr,ω)− k2

0εεε(rrr,ω)GGG
E
(rrr,ω) = ε0k2

0 δ (rrr− rrr′), (20)

so that EEE(rrr,ω) = 1
ε0

∫
drrr′GGGE

(rrr,rrr′,ω) ·PPPe(rrr′,ω), is in term of the E-field current density:

EEE(rrr,ω) =
i

ε0ω

∫
drrr′GGGE

(rrr,rrr′,ω) · jjje(rrr
′,ω). (21)

One can also construct a wave equation for the HHH field:

∇× 1
εεεr(rrr,ω)

∇×HHH(rrr,ω)− k2
0HHH(rrr,ω) = ∇× −iω

εεεr(rrr,ω)
PPPe(rrr,ω) = ∇× 1

εεεr(rrr,ω)
jjje(rrr,ω)

≡ μ0k2
0 PPPm(rrr,ω)≡ iωε0 jjjm(rrr,ω), (22)

where we have introduced a magnetic-field polarization, PPPm, and a magnetic-field current den-
sity. Equating coefficients then gives

jjjm(rrr,ω) =
−i

ωε0
∇× 1

εεεr(rrr,ω)
jjje(rrr,ω). (23)

This gives Eq. (3). Note that the k2
0 difference between Eq. (16) and Eq. (22) requires suitable

normalization of dipole source in calculations. We choose a different form for Eq. (16) since it
is more conventional.

Fig. 6. (a) Schematic of silver disk, (b) Electron energy loss scattering probability for a silver disk,
for comparison with Fig. 2(e) of Ref. [33].

We have repeated past calculation of EELS scattering by a silver disk for 100 keV beam
to ensure that our numerical procedure was giving good quantitative agreement with those
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works [33]. The FDTD parameters chosen were the same as those in Section 3.3. Figure 6
(a) shows a schematic of the disk structure. Figure 6 (b) shows the scattering probability as a
function of energy and the radial displacement. These results are close to those found in a past
work using the boundary element method [33]. In particular, the scattering probability of the
peak at 2.5 eV is 2%/eV (close to edge of disk), and the scattering probability of the peak at
3.4 eV is 2%/eV, whereas the values found in that past work were around 2.5%/eV.
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