
IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 2, NO. 5, OCTOBER 2013 559

Reconfigurable Feedback Shift Register Based Stream Cipher for
Wireless Sensor Networks

Guang Zeng, Xiaodai Dong, Senior Member, IEEE, and Jens Bornemann, Fellow, IEEE

Abstract—Secure wireless communications among sensor
nodes is critical to the deployment of wireless sensor net-
works. However, resource limited sensor nodes cannot afford
complex cryptographic algorithms. In this letter, we propose
a low complexity and energy efficient reconfigurable feedback
shift register (RFSR) stream cipher. The RFSR adds one new
dimension, reconfigurable cipher structure, to the existing stream
ciphers. The proposed RFSR is then implemented on a field
programmable gate array platform. Simulation results show
that much lower power consumption, delay and transmission
overhead are achieved compared to the existing microprocessor
based cipher implementations.

Index Terms—Stream cipher, wireless sensor network, energy
efficient cipher, feedback shift register.

I. INTRODUCTION

AFTER years of research and development, wireless sen-
sor networks (WSNs) are being deployed for various

industrial and consumer applications. Sensor nodes in WSNs
are low-cost, low-power, small size devices capable of monitor-
ing, data collection and transmission. However, the fact that
anyone with proper receiving tools has access to the signal
in the air, makes security a main issue of WSNs. Modern
WSNs are bi-directional, also enabling sensor nodes to control
other logically connected devices. The use of control functions
requires higher security mechanisms to prevent attacks.

However, sensor nodes are low-cost, computational- and
energy-limited devices which cannot afford resource con-
suming cryptography algorithms. Therefore, proper security
schemes befitting the requirements of WSN should guarantee
both sufficient level of security and low resource consumption.
Conventional public-key cryptography seems feasible but the
computational overhead is too large for resource-limited sen-
sor nodes [1]. Private-key cryptography, also known as sym-
metric cryptography, is suitable for environment constrained
applications such as sensor nodes. Private-key encryption
uses either stream ciphers or block ciphers. Compared with
block ciphers, stream ciphers are often simpler but suffi-
ciently secure. In a stream cipher, plaintext and keystream
are bitwise combined using exclusive-or (xor) operation to
generate ciphertext. The keystream is a pseudorandom bit
stream generated serially using shift registers in a stream
cipher. Ciphertext is transmitted over the air between two
communicating nodes. The decryption process on a receiving
node resembles the encryption process by bitwise xor of the
ciphertext with the keystream to restore the plaintext.

Manuscript received April 23, 2013. The associate editor coordinating the
review of this letter and approving it for publication was X. Fu.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
(e-mail: {gzeng, xdong}@ece.uvic.ca, j.bornemann@ieee.org).

Digital Object Identifier 10.1109/WCL.2013.13.130292

Software implementation of cryptography algorithms is
usually carried out by the embedded processor in a sensor
node. However, the computational resource limited embedded
processor is also responsible for other operations, such as
sensor control, communication protocol execution and sen-
sor data processing. While simple security algorithms may
have weaknesses for certain security attacks, complex security
algorithms will definitely take up much of a processor’s
resources and negatively impact other real-time tasks’ running.
Hardware encryption implementation frees a processor from
heavy duty security function processing and becomes a natural
choice for commercial uses such as A5/1 cipher of GSM,
E0 cipher of Bluetooth, etc. Hardware oriented stream cipher
design has relatively low power consumption, constant and
predictable delay and high throughput rate, which makes it a
good choice for sensor nodes.

A feedback shift register (FSR) based stream cipher uses
feedback update functions to generate new internal states from
the current internal states. The feedback update functions are
fixed in stream ciphers. Traditional stream ciphers can increase
their resistance against attacks by increasing the key and initial
vector (IV) sizes. However, if the feedback update functions
are designed to be dynamic, attacks will become harder to
accomplish because both the cipher structure (the feedback
update functions) and the secret key are unknown.

In this letter, we propose a light-weight hardware-oriented
cryptography algorithm, i.e., the reconfigurable feedback shift
register (RFSR) based stream cipher, and implement it on a
reconfigurable device to test its performance. In our design,
the feedback shift register based cipher is structure reconfig-
urable. This scheme guarantees high message confidentiality
for WSNs. Comparing with the existing microprocessor based
platforms, the proposed scheme achieves over 130 times less
average energy consumption, and over 25 times less delay.

II. SYSTEM MODEL

A. Network Model

A wireless sensor network is composed of resource limited
sensor nodes and powerful base stations (BSs). The WSN
may contain one or several BSs depending on its network
topology. A sensor node communicates with a base station
in one hop or multiple hops through other nodes or BSs.
Encryption is performed in both application layer and data
link layer. The application layer encryption guarantees that
only the destination BS and the original sender have access to
the sensor data. The data link layer encryption requires unique
pairwise ciphers established between neighbouring nodes to
protect relayed messages. Each sensor node is equipped
with both a microprocessor and a hardware component. The

2162-2337/13$31.00 c© 2013 IEEE

560 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 2, NO. 5, OCTOBER 2013

hardware component can be reconfigurable devices such as
field-programmable gate array (FPGA) or application-specific
integrated circuit (ASIC). In this letter, we simulate FPGA im-
plementations to demonstrate the performance of the proposed
cipher. The hardware component is used only for encryption
and decryption.

B. Security Model

We assume that sensor nodes have no tamper-resistant
mechanism. Once sensor nodes are captured and compromised
by an adversary, all stored data such as cipher structures and
keys will be exposed and can be utilized by reprogramming
captured nodes. An adversary can also launch passive attacks
which attempt to break the cipher by eavesdropping on com-
munications between legitimate nodes. Denial of service (DoS)
attacks can be mounted to disrupt regular communications
between nodes, or to drain up nodes’ energy. DoS attacks
in the data link layer and the application layer are considered
in the letter.

III. THE RECONFIGURABLE FEEDBACK SHIFT REGISTER

CIPHER

The proposed algorithm is based on Grain cipher [2], and
hence we first briefly review Grain cipher and its application
in WSN in Section III-A. Afterwards, the RFSR cipher is
described in detail in Section III-B. Finally, the initialization
process of the RFSR cipher is presented in Section III-C.

A. Grain Cipher

Grain is a family of stream ciphers selected for the final
eSTREAM portfolio for Profile 2 by the eSTREAM project. It
is known for its hardware-oriented, elegant and simple design.
The essential feature of the algorithm is one output function
and two sets of feedback shift registers - one with linear
feedback update function and the other one non-linear. The
feedback functions are fixed. Keys and IVs are used as the
initial values of linear feedback shift register (LFSR) and
non-linear feedback shift register (NFSR), respectively. The
original design uses 80-bit key and 64-bit IV. Grain128 has
128-bit key and 96-bit IV. Previous research shows that radio
transmission consumes much more power than computation
[3][4]. Longer keys and IVs lead to larger communication
overheads for key establishment and update. Since the IV is
transmitted in each packet, reducing the size of the IV will
significantly decrease total power consumption. Besides, Grain
cipher can be conveniently modified to multiply its throughput
rate by using additional parallel feedback update functions and
output functions.

B. RFSR Cipher

Similar to the Grain cipher, the proposed reconfigurable
feedback shift register based cipher, depicted in Fig. 1, consists
of three main building blocks, namely a LFSR with linear
feedback update function f , a NFSR with non-linear feedback
update function g, and an output function h. In our design,
we use a 32-bit LFSR and a 64-bit NFSR while 128-bit LFSR
and NFSR are used in Grain128. Other choices of sizes can be

output bit

...

...

NFSR

Randomly Chosen

Randomly Chosen

g(·) f(·)
...

...

Randomly Chosen

LFSR

h(·)

Randomly Chosen

Fig. 1. RFSR cipher structure.

carefully designed as well. The states of the LFSR are denoted
as y1, y2, ..., y32. Similarly, the states of the NFSR are denoted
as z1, z2, ..., z64. The reconfigurable feedback update function
of the LFSR f is defined as

f : y0 = ya1 + ya2 + ya3 + ya4 + ya5 + y32,

where a1 to a5 are carefully chosen so that f is a primitive
polynomial of degree 32. The primitive polynomial guarantees
that the internal states of the LFSR can reach the maximum
period of 2n − 1, where n is the size of the LFSR. Since the
primitive polynomial has been studied extensively, taps of the
LFSR feedback update function in our design are randomly
chosen from a structure pool of 5039 existing 32-bit primitive
polynomials [5].

The feedback update function of the NFSR is defined as

g : z0 = y32+z64+zb1 +zb2 +zb3 +zb4 +zb5 ·zb6 +zb7 ·zb8 +
zb9 · zb10 + zb11 · zb12 + zb13 · zb14 · zb15 + zb16 · zb17 · zb18 · zb19 ,
where zb1 to zb19 are randomly but not repeatedly chosen
from the states of the NFSR, z1 to z63. According to boolean
algebra, repeating values in b1 to b19 will reduce monomial
numbers and then compromise the designed security level.

The output function h gets its input from the states of both
LFSR and NFSR. It is defined as

h : output bit = yc1 + zd1 + zd2 + zd3 + yc2 · yc3
+yc4 · zd4 + zd5 · zd6 + yc5 · zd7 · zd8,

where yc1 to yc5 and zd1 to zd8 are randomly but not repeatedly
chosen from y1 to y32 and z1 to z64, respectively.

For the RFSR cipher, the feedback functions f ,g and h are
all reconfigurable while these functions in Grain128 are fixed.
In RFSR, f is composed of 4 or 6 dynamic taps while that in
Grain128 has 6 fixed taps; g is composed of 6 degree-one, 4
degree-two, 1 degree-three and 1 degree-four monomials while
that of Grain128 is composed of 6 degree-one, 7 degree-two
monomials; h is composed of 4 degree-one, 3 degree-two and
1 degree-three monomials while that of Grain128 is composed
of 8 degree-one, 4 degree-two and 1 degree-three monomials.

As indicated above, in addition to the key update of tra-
ditional stream ciphers, the proposed RFSR cipher can also
update its structure. The structure update consists of three
basic elements: f update, g update, and h update. A system
can carry out partial or total structure update which means
one or two, or all of the three basic elements are updated.
Any change in the cipher structure will definitely change the
output keystream and result in a brand new cipher. Since the
keystream is a pseudorandom bit stream generated by the
stream cipher and known to both communicating parties, it

ZENG et al.: RECONFIGURABLE FEEDBACK SHIFT REGISTER BASED STREAM CIPHER FOR WIRELESS SENSOR NETWORKS 561

...

...

NFSR

Randomly Chosen

Randomly Chosen

g(·) f(·)
...

...

Randomly Chosen

LFSR

h(·)

Randomly Chosen

Fig. 2. RFSR initialization.

can be applied to generate a new cipher structure. Proper
algorithms can be easily designed to update cipher structures
by use of the previously generated keystream. Moreover, a
security mechanism in upper layers can be designed to control
the structure update, such as partial or total update, update
frequency, etc.

C. Key and IV Initialization

In addition to the structure update, keys and IVs are updated
on a regular basis. The cipher initialization process is shown in
Fig. 2. It is first clocked 96 (=32+64) times without producing
the keystream to make sure that all the initial states of the
cipher have influence on the cipher states after initialization.
Although there exists a related key-IV pair weakness in the
initialization as Grain cipher [6], it can hardly lead to any
effective key recovery attacks.

IV. SECURITY ANALYSIS

A. Cipher Security

Since the proposed RFSR cipher is designed based on the
Grain cipher, the cryptographic analysis on Grain can also be
applied to RFSR ciphers. By now, no key recovery attacks
more effective than brute force attack are known against
Grain128, indicating the level of security of Grain. Several
minor differences between RFSR and Grain are analyzed
below.

In RFSR, the simplified feedback and output functions and
the smaller 96 internal states of 32-bit LFSR and 64-bit NFSR
in the contrast to the 256 internal states of 128-bit LFSR
and NFSR in Grain128, seem to make RFSR cipher more
vulnerable to attacks. However, the changeable cipher structure
makes the RFSR cipher much more difficult to succumb to
attacks. Assume an adversary may have access to the entire
5039 LFSR structure pool by compromising a large number
of sensor nodes. The basic NFSR feedback boolean function
and basic output boolean function may also be available. But
the random taps used in the NFSR feedback function or in the
output function are still unknown, which are 19 taps of NFSR
states in the NFSR feedback function, 8 taps of NFSR states
and 5 taps of LFSR states in the output function. The total
possible structure will be 5039∗(6319

)∗(325
)∗(648

) ≈ 1.33∗2114.
Therefore, it is hard to launch attacks on RFSR ciphers.

B. Attack Analysis

The large number of possible cipher structures makes
eavesdropping hard to compromise system security. Note that

different pairwise RFSR ciphers are established and used in
the data link layer between neighbouring sensor nodes, and
another RFSR cipher is used in the application layer between
the BS and the source sensor node. Even when several nodes
are captured by adversaries, only the ciphers owned by these
nodes are exposed but they cannot be utilized to break un-
compromised nodes’ ciphers. DoS attacks and forgery from an
outsider are defended with the use of a message authentication
code (MAC). A MAC is added to each message’s payload and
helps the receiver verify the authenticity and integrity of the
received messages. A message is considered valid only if the
received MAC is correct. The remedies for the DoS attacks
coming from the captured nodes have been proposed in the
literature, such as switching to low duty cycle and conserving
power, locating attack area and re-routing traffic, and adopting
prioritized transmission [7].

V. IMPLEMENTATION, SIMULATION AND PERFORMANCE

Altera Cyclone II EP2C8T144C6 FPGA was chosen as
the target implementation device. The simulation software
platforms are Altera Quartus II V12.1 and Mentor Graphics
ModelSim SE 10.1a. We simulate the power consumption
using the Altera PowerPlay power analysis tool [8]. PowerPlay
uses actual design placement and routing and logic configura-
tion which is claimed to be accurate (to within ±10%) for the
actual device power consumption [9]. Existing experiments
[10] also show that the result of PowerPlay power estimation
on Cyclone II series is reasonable.

The total FPGA power consumption comprises static power
and dynamic power. Static power is the power consumed
by a device due to leakage currents when in quiescent state.
Dynamic power is the additional power consumed through de-
vice operation caused by signals toggling and capacitive loads
charging and discharging. Therefore, with increasing operating
clock frequency, the dynamic power increases accordingly but
the static power remains the same.

Firstly we execute the gate-level timing simulation, which
takes all the routing resources and the exact logic array
resource usage into account to obtain an accurate power
estimation. Then PowerPlay is run to measure the average
power consumption of each operation. We obtain the power
consumption directly from the PowerPlay tool report and
calculate the energy-per-bit performance.

A. Cipher Implementation

The proposed implementation achieves several cipher func-
tionalities with only one structure implementation. Each ci-
pher’s specific information, such as key, IV, feedback taps, and
output function, are stored in random access memory (RAM).
Since one sensor node needs several RFSR ciphers for data
link layer pairwise encryption and application layer encryption,
the proposed implementation builds upon a basic cipher infras-
tructure, and the system automatically loads specific cipher
information from RAM when required.

Similar to the Grain’s structure, the throughput of the
proposed RFSR cipher can be easily multiplied by implement-
ing feedback functions and output functions several times.
Average power consumptions are compared with different

562 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 2, NO. 5, OCTOBER 2013

TABLE I
COMPARISONS WITH MICROPROCESSOR PLATFORMS

Platform Algorithm Clock(MHz) Delay(us) Energy(nJ/bit)
FPGA RFSR 50 2.08 0.32

ATmega103 RC4 4 3262 105.12
StrongARM RC5 206 53 41.41

TABLE II
CIPHER COMPARISONS ON FPGA

Algorithm Logic Elements Delay (us) Energy (nJ/bit)
RFSR 5207 2.08 0.56
RC4 12917 6.40 11.18
RC5 6172 18.56 7.75

throughput rates at 1 and 8 bits per clock cycle, and different
clock rates at 10 and 50 MHz. We find from simulation
that the average energy consumption of 8 bits per clock
implementation is almost 6 times less than 1 bit per clock.
As expected, with different clock rates, the static power is
almost the same but the dynamic power is proportional to the
operating frequency.

B. Comparison with Microprocessor Platforms

Previous research [11] studied the performances of sev-
eral ciphers and hash functions on microprocessor platforms.
We choose ATmega103 and StrongARM microprocessor plat-
forms which respectively represent low-end and high-end
processors. Since a microprocessor processes one instruction
per clock, the fastest encryption scheme for a particular
platform is also the most energy efficient scheme. The most
energy efficient algorithms for ATmega103 and StrongARM
platforms are RC4 and RC5, respectively. Existing flaws
[12][13] make RC4 and RC5 susceptible to attacks, while
brute force attack remains one of the most effective attack
against Grain128, indicating the higher security of Grain128.
The plaintext to be encrypted is 512 bits long, and initialization
is executed before encryption. Per bit energy consumption
is calculated by averaging both initialization and encryption
energy consumption over the total 512 bits.

The results and comparisons are shown in Table I. The
average energy consumptions of ATmega103 and StrongARM
are 329 and 130 times more than that of the proposed RFSR
scheme, respectively. Even though StrongARM is running 4
times faster, the delay is still 25 times larger than that of RFSR
FPGA implementation while the delay of ATmega103 is 1568
times larger with 12.5 times slower clock than those of the
proposed.

Comparing with FPGA, ASIC implementation runs faster
and is more energy efficient but much more expensive to
prototype. Existing research [14] compares FPGA and ASIC
design in circuit speed and power consumption and shows
that ASIC designs are 87 and 14 times less than FPGA
design, in static and dynamic power consumption respectively.
The proposed scheme therefore uses even less power with
ASIC implementation. Even though the comparisons in Table
I are based on different platforms and different encryption
algorithms, it is clear that the hardware-oriented RFSR scheme
is better suited for use in sensor nodes due to low energy
consumption and small delay.

We also implement RC4, RC5 and the proposed RFSR
cipher on the same FPGA platform for fair comparison. The
tests are run on Altera Cyclone II EP2C15AF256A7 at 50
MHz clock rate. As shown in Table II, the hardware-oriented
RFSR cipher entirely outperforms RC4 and RC5.

C. Comparison with Grain128

The proposed design is compared with Grain128 on the
energy consumption of keystream generation with 10 MHz
clock and 8 bit/clock throughput rate. The results are com-
parable: 0.253 nJ / bit for Grain128 and 0.544 nJ / bit for
the RFSR scheme. However, considering the transmission
overheads caused by the IV size, the energy consumption of
the proposed RFSR scheme is 10.3% lower than Grain128 for
a packet size of 512 bits. Besides, to break RFSR by brute
force, it requires about 1.33 ∗ 234 times more complexity than
for Grain128.

VI. CONCLUSION

In this letter, we have proposed a low complexity recon-
figurable feedback shift register (RFSR) based stream cipher
and shown that it is more secure than the widely used Grain,
RC4 and RC5 algorithms. Implemented on an FPGA platform,
the proposed scheme consumes over 130 times less average
energy, and renders over 25 times less delay than existing
microprocessor platforms.

REFERENCES

[1] D. Malan, M. Welsh, and M. Smith, “A public-key infrastructure for key
distribution in TinyOS based on elliptic curve cryptography,” in Proc.
2004 IEEE Conf. on Sensor and Ad Hoc Communications and Networks,
pp. 71–80.

[2] M. Hell, T. Johansson, and W. Meier, “Grain: a stream cipher for
constrained environments,” in Int’l J. Wireless and Mobile Computing,
pp. 86–93. Jan 2007.

[3] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. Shantz, “Energy
analysis of public-key cryptography for wireless sensor networks,” in
Proc. 2005 IEEE Intl. Conf. Pervasive Computing and Comm., pp. 324–
328.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in SIGARCH
Comput. Archit. News, pp. 93–104, Nov. 2000.

[5] New Wave Instruments, “Tables of M-Sequence Feedback Taps,”
http://www.newwaveinstruments.com/resources/articles/m sequence
linear feedback shift register lfsr.htm.

[6] Ö. Küçük, “Slide resynchronization attack on the initialization of grain
1.0,” in eStream ECRYPT Stream Cipher Project Report, vol. 44, 2006.

[7] A. Wood and J. Stankovic, “Denial of service in sensor networks,”
Computer, pp. 54–62, Oct. 2002.

[8] Altera Corporation, Quartus II Handbook Version 12.1, Nov. 2012.
[9] ——, FPGA Power Management and Modeling Techniques, Dec. 2010.

[10] D. Meintanis and I. Papaefstathiou, “Power consumption estimations vs
measurements for FPGA-based security cores,” in Proc. 2008 Intl. Conf.
on Reconfigurable Computing and FPGAs, pp. 433–437.

[11] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller,
and M. Sichitiu, “Analyzing and modeling encryption overhead for
sensor network nodes,” in Proc. 2003 ACM Intl. Conf. on Wireless
Sensor Networks and Applications, pp. 151–159.

[12] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key scheduling
algorithm of rc4,” in Sel. Areas in Cryptography, pp. 1–24, 2001.

[13] A. Biryukov and E. Kushilevitz, “Improved cryptanalysis of rc5,” in
Proc. 1998 Advances in Cryptology-EUROCRYPT, pp. 85–99.

[14] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
pp. 203–215, Feb. 2007.

