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Abstract—This paper considers the operation scheduling prob-
lem in renewable-powered microgrids, which is used to determine
the least-cost unit commitment (UC) and the associated dispatch,
while meeting load, environmental, and system operating require-
ments. The intermittency nature of the renewable energy sources,
as well as microgrid’s capacity to operate either in parallel with, or
autonomously of, the traditional power grid, pose new challenges to
this classic optimization task. A probability-based concept, proba-
bility of self-sufficiency (PSS), is introduced to indicate the proba-
bility that the microgrid is capable of meeting local demand in a
self-sufficient manner. Furthermore, to the best of our knowledge,
we make the first attempt in approaching the mixed-integer UC
problem from a convex optimization perspective, which leads to an
analytical closed-form characterization of the optimal commitment
and dispatch solutions. The simulation results show that 1) the
proposed method achieves an efficient performance that incurs no
loss of optimality with lower complexity than existing algorithms;
2) an energy storage system (ESS)with suitable capacity contributes
to the self-sufficiency target of a microgrid, and the stored energy
varies less remarkably as the microgrid tends to operate more
independently; 3) the proposed method provides guidelines in decid-
ing the ESS size to achieve a desired PSS.

IndexTerms—Distributed generators, duality, economicdispatch,
microgrid, renewable energy resources, unit commitment (UC).

NOMENCLATURE

Symbol Description
Emission coefficients of a unit.
Demand forecast error.
Wind power forecast error.
Convergence criterion parameter.

, , Lagrange multipliers.
Mean of demand forecast error.
Mean of wind power forecast error.
Cooling time constant of a unit.

Variance of demand forecast error.

Variance of wind power forecast error.

Step size of the subgradient method.

UC indication function.
Emission limit.
Euclidean projection of to the interval

, i.e., .
Euclidean projection of to the interval

, i.e., .
Fuel cost coefficients of a unit.
Aggregated cost coefficients of a unit.

Maintenance cost coefficients of a unit.
Error function [17, eq. 8.250.1].
Unit index (subscript).
Iteration index (superscript).
Power dispatch of a unit.
Optimal power dispatch of a unit.

, Minimum and maximum power generation
limits.
Wind turbine power output.
Power dispatch of a unit in the relaxed UC
problem.
Forecasted wind power in time interval .
Hour index (subscript).
Unit status indicator of a unit where 1means
ON and 0 means OFF.
Cut-in wind speed.
Cut-out wind speed.
Rated wind speed.
Wind speed.
Rated electrical power.
Modifiedelectricitydemandintimeinterval .

, Lower and upper limits of the energy stored
in ESS.
Cold start-up cost of a unit.
Dual function.
Forecasted demand in time interval .
Emission function of a unit.
CDF of wind power forecast error.
Fuel cost function of a unit.
Hot start-up cost of a unit.

L Lagrange function.
Maintenance cost function of a unit.

, The time a unit needs to remain ON/OFF if ON/
OFF at the beginning of the scheduling period.
Total number of units.
Probability operator.
Probability of self-sufficiency.
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Operating reserve requirement in time
interval .
Start-up cost function of a unit.
Total time horizon of 1 day.
Total cost of all units.

, The time a unit has been ON/OFF at the
beginning of the scheduling period.

I. INTRODUCTION

S USTAINABILITY has become an imperative requirement
on the electric power infrastructure with the impending

energy crisis and environment deterioration. In parallel to the
rapid evolution of smart-grid-based solutions [1], another emerg-
ing power distribution system known as microgrids is also
quietly gaining momentum. Amicrogrid is an integrated system
consisting of a set of distributed generators (DGs) [microturbines
(MT), fuel cells (FC), reciprocating engines] and renewable
energy sources (RESs) [solar photovoltaics (PV) and wind
turbines (WT) systems] [2], which function cooperatively to
furnish the cooperation in parallel with, or autonomously of, the
traditional electricity macrogrid. The defining characteristic of
a microgrid is its ability to separate itself seamlessly from the
macrogrid during a utility grid disturbance, and function as a
self-controlled entity with high efficiency and low greenhouse
gas emissions. This transparent adaptation in operational modes,
along with the capacity to better manage distributed energy
resources (DERs), renders microgrid the most promising solu-
tion to develop a more reliable and decentralized energy system.

The daily operation of a microgrid involves finding the least-
cost dispatch of the DGs that minimizes the total operating cost,
while meeting the electrical load and satisfying various technical,
environmental, and operating constraints. This can be seen as a
downsized version of the unit commitment (UC) problem that is
traditionally applied to large central generators in macrogrid [3].
Mathematically, the UC task can be described as a mixed-integer
optimization problem with a nonlinear solution space, which has
been the subject of intensive investigation for more than 40 years
(c.f., bibliographical survey [4]). Nevertheless, the unique features
of microgrids introduce further restrictions as well as simplifica-
tions to this classic optimization task that needs to be addressed.

The biggest challenge comes from the intermittent nature of
RESs, which often leads to power variations and makes it much
more difficult to produce accurate day-ahead schedules in
microgrids. Therefore, the operation scheduling of the dispatch-
able DGs should be performed at a much finer level, providing
quick and continuous power provision, based on the most recent
and accurate forecasted data [5]. Although large thermal units
are often subject to ramping rate limits that are typically in the
order of several tens of megawatts per hour, it only takes
several minutes for an MT to ramp up from 0 to full load [6].
This further supports the operation scheduling to be performed
at a more granular level for microgrids [7]. Last but not the least,
the capacity of switching between different operational modes
calls for a proper modeling framework that reflects the unique
characteristic of microgrids.

Various numerical-based algorithms, including some typical
heuristic methods such as genetic algorithm (GA) [8], [9],

particle swarm optimization (PSO) [10], simulated annealing
techniques [11], [12], and network-flow programming [13], have
been proposed to solve the optimal UC problem, but most of
them only provide a reasonable numerical solution (suboptimal,
nearly global optimal) and have high computational complexity.
For the classical mixed-integer UC problem, the branch and
bound (BB) technique provides exact accurate numerical results.
However, the procedure is generally not efficient except when
large portions of the solution space can be quickly discarded in
the case that there are not toomany solutions having near optimal
function values. In [14], a linear optimization problem was
formulated and numerically solved to determine the optimal
size of energy storage system (ESS) that minimizes the operating
cost. The authors in [15] and [7] also established UC strategies
based on piecewise linear blocks approximating the quadratic
objective function and frequency droop scheme. The authors in
[16] modeled explicitly the length of time the microgrid operates
autonomously and used a Monte Carlo analysis to study the
impact of RESs over a set of United Kingdom commercial
load profiles.

This paper deals with a quadratic formulation of the environ-
mental/economic UC optimization problem in a microgrid that
consists of DGs, RESs, and an ESS. The contributions of this
work are summarized as follows: 1) in light of microgrid’s
unique operational feature and to take into account the forecast
errors that exist in demand and wind power forecast, a novel
probability-based concept is proposed to indicate the probability
that the microgrid is able to operate in islanded mode, termed
“probability of self-sufficiency” (PSS); 2) the mixed-integer UC
problem is approached from a convex optimization perspective,
which leads to an analytical closed-form solution. Compared to
two classical methods, BB and GA, the proposed method uses
significantly less processing time yet renders no loss of optimal-
ity in performance; and 3) the proposed method provides guide-
lines in deciding the size of ESS to improve the autonomous
target PSS for a microgrid efficiently.

The remainder of this paper is organized as follows. Section II
discusses the basic systemmodels includingwindpower forecast,
operating cost, emission, as well as various unit and operation
constraints. In Section III, the optimal UC problem is formulated,
transformed into a convex optimization problem, and finally
solved in analytical closed forms. An efficient subgradient-based
algorithm is also proposed to obtain the optimal UC solution in
this section. Section IV conducts numerical simulations that
verify the efficiency and reliability of the proposed scheme.
Finally, concluding remarks are drawn in Section V.

II. SYSTEM MODEL

We consider a microgrid that consists of a set of DG units,
including both MTs and FCs, an RES, the WT, and an energy
storage module, the ESS. Electrical loads in the microgrid are
prioritized into tiers, which consists of critical loads that relate to
essential processes that must be always met and lower-priority
non-critical loads that can be temporarily removed until adequate
power is available. Due to the limited capacity of the DERs and
as in [18]–[20], we assume that the microgrid schedules its units
to meet the critical loads in the highest priority, satisfies the
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non-critical loads using best efforts, and purchases power from
the macrogrid in case of supply shortage. In addition, to better
utilize an environmentally friendly resource, we assume that the
WT is always ON and functions as the primary power source [14].
TheDGs, on the other hand, serve as backup generators andwork
collaboratively with the WT to meet the critical loads. The ESS
module is introduced to mitigate the renewable power intermit-
tencies and load mismatches. In this work, we assume that the
microgrid updates its UC strategy every 1 h1 during which load
and generation are considered constant.

A. Forecasted Wind Power Model

Wind power is the electrical power generated byWT, installed
in locations with strong and sustained winds. In practice, the
actual wind power almost entirely depends on the wind speed

when other physical limitations arefixed or changed relatively
slowly [14]. In principle, is a random variable and varies
continuously over time. In this work, we assume that remains
unchanged in one scheduling period (i.e., 1 h), and can vary
independently between different scheduling periods.

Extensive research has been done in developing wind
forecasting models and approaches [14], [21]. To capture the
relationship between the wind speed and wind power and as in
[14] and [22], the following piecewise linear model is adopted:

<

B. Cost Models for MT and FC

MTs are small electricity generators that burn gaseous and
liquid fuels to create high-speed rotation that turns an electrical
generator. Depending on the size range, an MT can ramp up
from 0 to full load between 10 s to several minutes [6]. The FC
technology uses an electrochemical process rather than a com-
bustion process to generate electricity. Polymer electrolyte FCs,
also known as proton exchange membrane FCs, are particularly
attractive for microgrids that require rapid start-up and quick
response to load change [23].

The operating cost of an MT/FC usually includes fuel cost,
maintenance cost, and start-up cost.

Fuel Costs: The fuel costs for DGs are considered as a
quadratic model [24], which includes linear fuel cost models
as special cases [7], [14]. The fuel costs of unit in time interval
can be expressed as

Maintenance Costs: Themaintenance costs for DGs are based
on forecasts with minimal real-life situations, which are assumed
to be proportional to the produced power [25]. Therefore, the
maintenance costs of unit in time interval is

Start-Up Costs: The generator start-up cost depends on the
time the unit has been off prior to a start-up. The start-up cost
of unit in time interval can be represented by an exponential
cost curve [24, eq. (3.12)]

Sometimes, the industry is interested in the total cost per day

C. Emission Model

Emission effects should be taken into account for an
environmentally friendly power production. The microgrids are
envisioned to be new energy savings and green grids in the
future, which entails carbon emissions limited to regulations and
legal requirements.

The amount of emissions produced depends on the fuel used,
pollution control devices installed, and the amount of electricity
generated. In this work, we assume that only DGs produce
emissions and the RESs are emission free.2 The emission
function is typically expressed as a polynomial, the order of
which depends on the desired accuracy [27], [28]. As in [15] and
[28], a quadratic function is considered for the emission curve
as follows:

D. Energy Storage System

In renewable-powered microgrids, the problem of mitigating
power intermittencies and load mismatches is an important and
challenging task. In this context, an ESS plays a critical role in
shaving peak demand and compensating forecast errors. For
instance, when the forecasted wind power is smaller than the
actual value (i.e., an underestimate), the supplied power is likely
to be larger than the actual electricity demand, in which case
the ESS will be functioning in charging state to store surplus
electrical/renewable energy, which can be dispatched properly
later in the event of power shortage.

The charge and discharge of theESS is subject to stored energy
limits, and , which specify the minimum and maxi-
mum energy stored in the battery bank, respectively. In this case,

is set as the full capacity of the ESS and to be around
10% of its full capacity. The ESS is also subject to starting and
ending limits that specify the initial and final energy inside the
battery bank during the course of 1 day. In this work, the starting
and ending limits are both selected as for the purpose of
energy balance of the ESS [14].

1Depending on different application requirements, a smaller updating interval
can be selected since the closed-form UC solutions can be computed fast.

2Note that the emissions in the production process ofWTand other equipments
[26] have not been considered.
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E. Unit and Operation Constraints

Maximum and Minimum Output Limits: The output power of
the DG in stable operation is restricted by its lower and upper
limits as follows:

In our case, theminimum available power for theDGs is 0, i.e.,
the DG can be turned OFF when the output power from the WT is
enough to meet the demanded power.

Minimum Up/Down Time:Once a DG is switched ON, it has to
operate continuously for a certain number of times before it can
be switched OFF. Also, a certain number of hours have to pass
before a DG can be brought online after being switched OFF.
Violation of such constraints can shorten the unit’s life time.
Mathematically, we have

For DGs in microgrids, the minimum up/down time of DGs is
around 600 and 300 s [5], respectively, which is always satisfied
under hourly scheduling operations.

RampRates:Traditional thermalunitsareoftensubject to ramp
rate limits that specify the amount a unit’s generation can increase
or decrease during one scheduling period. In the context of
microgrids, small DG units can ramp up from 0 to full load in
the order of several minutes [23]. Thus, the ramp rate limits are
typically not reached under normal hourly scheduling operations.

Emission Limits: To comply with the purpose of environment
conservation and reduce the greenhouse gas footprint, we impose
hourly emission limits on all the DGs. Mathematically, we have

Operating Reserves: In the event of a power supply disruption,
operating reserve constraints guarantee that there exist extra
generating capacity to the system that can be brought online
immediately (spinning reserves) or within a short interval
(supplementary reserves). In microgrids with fast-start DGs,
operating reserves are imposed as follows [3]:

Probability of Self-Sufficiency: Both demand and renewable
power forecast are prone to errors, which negatively affect
the microgrid in meeting the local power demand and their
autonomous and independent functions. Once a microgrid
cannot meet the power demand solely based on local
generating units, it can switch to a grid-connected mode and
purchase energy from the upstream macrogrid. To better
understand the impacts of operational mode on total operating
cost, we propose the use of a novel probability-based concept,
PSS, which indicates the target probability that the microgrid
is able to operate in islanded mode without purchasing energy
from the macrogrid.

As in [29] and [30], we assume that both demand forecast
error and wind power forecast error can be modeled
as independent normally distributed random variables, i.e.,

and , respectively. Then,
the probabilistic power balance constraint can be expressed as

which, after some algebra, can be reformulated as

III. PROBLEM FORMULATION AND CLOSED-FORM SOLUTIONS

Based on the aforementioned cost models and system con-
straints, we first formulate the UC optimization problem that is
used to determine the loads and commitments of DGs such that
the total cost is minimized, power demand is met, and the system
constraints are satisfied. A duality-based analysis is then applied
to derive closed-form solutions. Finally, an efficient subgradient-
based method is introduced to numerically compute the optimal
solutions.

A. Problem Formulation

The UC optimization problem in a particular operation sched-
uling interval can be written as

Evidently, problem is a mixed-integer programming prob-
lemwith a nonlinear solution space. In order to transform into
a convex optimization problem, we introduce auxiliary power
variables and relax to be a continuous variable
in [0,1]. Thus, the transformed problem can be written as3

3The objective function is defined at by continuity as
.
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where the aggregated cost coefficients are and
. Note that the objective function of

is equivalent to that of as the change of variables is invertible
except for . The same statement holds for the emission
constraints (10) and (14). In case that , every
solves .

The Hessian matrices of the objective function and the
constraints of are positive semi-definite, and the form of
the whole problem meets the requirement of a convex problem
[31], indicating that is a convex problem.

B. Closed-Form Economic Dispatch and UC Solutions

To solve analytically, we first decouple the optimization
variables and by substituting . Note that

for the case of interest, i.e., . For this reason,
we will henceforth use . The Lagrangian function can
then be written as

L

where can be viewed as the UC indication function

The dual function can be obtained by minimizing the
Lagrangian (14), which is given by

The initial step to solve (16) is to tackle the innerminimization,
the solution of which can be easily derived as

The next step is to solve the outer minimization over in
(16), given the optimal power dispatch solution (17). Evidently,
the minimum value is attained by setting for all

< and otherwise. Mathematically, we have

<

Remark 1: An important step in the course of analytical
derivation is to decouple the optimizations of the commitment
status and the power dispatch separately as in (16).

Besides, we observe that the commitment decisions are
completely determined by the sign of at the optimal
dispatch [c.f. (18)]. Thus, can be seen as a UC
indication function. In the case that the power generated by
the WT is sufficient to meet local power demand, the microgrid
will be entirely powered by the RES and no DG needs to be
turned ON, i.e., for all .

C. Subgradient-Based Algorithm

So far, we have found the analytical optimal solutions in
(17) and in (18), which are, however, functions of the
Lagrangian multipliers. By convexity, it suffices to obtain the
optimal dual variables ( , , ) to the dual problem, which
are used to compute optimal primal solutions (17) and (18).
The complete algorithm is formally stated in Algorithm 1.
This section discusses the use of a subgradient-based iterative
procedure to numerically compute the corresponding optimal
Lagrangian multipliers , , and . The key iteration steps
are [31]

which are provably convergent to the optimal value provided
that the step sizes are selected to satisfy and

< [32]. A graphical convergence illustration can
be found in the simulation section.

Algorithm 1 Subgradient-based algorithm

Initialize Lagrangian multiplier , , and to arbitrary
non-negative values and set the step size .

repeat

Compute economic dispatch using (17).

Obtain UC indication function via (15).

Find unit status indicator using (18).

Update , , and via (19), (20), and (21),
respectively.

until < .

IV. SIMULATION RESULTS AND DISCUSSION

In this study, a microgrid system consisting of two MTs, FC
andWT, and one ESS is considered for a scheduling time horizon
of 24 h. The fuel cost coefficients, the emission coefficients,
and the power limits of theDGs are summarized in Table I, where

of all DGs are 0 kW. Similar parameter settings have also
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been used in [8]. The emission limit is set as 150 kg/hr.
The wind speed data samples adopted in this work are from
the “Wind Test Center” in West Texas A&M University [33],
with the parameters in (1),

. Unless stated otherwise, the demand forecast
error statistics and those of the wind power are set as

, , and . To understand the
impact of PSS on the total operating cost, three different
operation scenarios are considered, which are ,

, and .

A. UC, Dispatching and Methods Comparison

This section illustrates the derived UC solutions without
considering the functionality of the ESS. The effects of ESS
will be investigated in Section IV-C. Fig. 1 illustrates the fast
convergence behavior of the proposed algorithm in optimizing
the total operating cost per day of the microgrid. It takes only
about 20 iterations to reach the optimal solution under all three
PSS values. Besides, it is observed from Fig. 1 that the operating
cost increases as the microgrid functions more autonomously,
since more power has to be generated to ensure self-sufficiency
and to mitigate demand and wind power forecast errors.

Fig. 2 shows the comparison results of four different methods
in our environmental/economic dispatch optimization problem.
We use GA and the proposed method (Prop-algor) to solve the
original problem and the transformed problem , respec-
tively. In addition, BB is applied to solve , providing us an
accurate result as a benchmark. In terms of computational
complexity, the proposed method has [31] time
complexity with the number of generators in the system,
while BB with depth-first search requires the computation on the

order of , with < < [34], and a simpleGA
involves a complexity of , where gens is the
number of generations and pop the population size [35]. There-
fore, the proposed method achieves accurate results with lower
computational complexity compared to BB and GA as shown in
Fig. 2. The corresponding CPU time to run the proposed algo-
rithm has been plotted in Fig. 3. It is observed that the algorithm
running time decreases as the stopping criterion drops from
within 0.1% of the value in the previous iteration to 10%.

The optimal amount of dispatch of each DG for given demand
and wind power forecast profiles is shown in Fig. 4 under
different target PSS values. Take Fig. 4(b) as an example.
Observe the forecast wind power decreases from 1:00 A.M. to
5:00 A.M. in the early morning. In order to fulfill the demand, the
DGs are dispatched economically according to the optimal UC
solution. The dispatched power from the DGs continues to be in
a higher level until 13:00 P.M., when the forecast wind power
comes into play again. At midnight, the power demand reaches a
minimum and the microgrid is entirely powered by the wind
power. During the whole process, the DGs serve as backup

TABLE I
PARAMETERS OF DISTRIBUTED GENERATORS

Fig. 1. Total operating cost per day under different PSS targets.

Fig. 2. Performance comparison of different optimization algorithms under
. , , and

for GA.

Fig. 3. Elapsed CPU time of the proposed algorithm under different stopping
criteria. The computer used was an ThinkPad Laptop with a i7 M560 duo-core
processor at 2.67 GHz.
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sources that complement the renewable source in meeting elec-
tricity demand.

Table II further depicts theUC status of theDGs for the case of
over a period of 24 h. Cross-referencing Fig. 4(b),

we can observe that an FC is the most preferred power source
among the DGs and contributes significantly during the entire
scheduling period. In contrast, MT2 contributes the least and
is always the last one to be turned ON. The reason is as follows.
Recall from (18) in Section III-B that the commitment status of
the DG is solely determined by the sign of the UC indication
function at the optimal dispatched point . An interest-
ing phenomenon observed from numerical results is that

< < for all . In other
words, there exists a hidden priority listing order that arranges
the DGs based on lowest operational cost characteristics as well
as emissions.

B. Operating Cost Versus Different Forecasting Time Horizons

Clearly, the shorter the forecasting interval is, the more
accurate the forecast data and the smaller the variance of the
forecast error. According to [29] and [36], the typical standard
deviation of the wind power forecast error for a specific wind
farm can be expressed as a function of the forecast horizon,which
can be approximated accurately by a linear function when the
forecast horizon is less than 6 h. Fig. 5 examines the impact of
varied forecasting time horizons on the total operating cost,
based on the aforementioned linear model. It is observed that for
the case of , the operating cost grows almost linearly
as the forecasting interval increases from 10 min to 1 h. The
same trend is observed for the case of . Interestingly,
the cost holds constant for the case of , due to the fact
that the microgrid is indifferent to either being connected to, or
autonomous of the macrogrid.

C. The Impact of ESS on Microgrid’s Autonomy

In the last numerical example, we incorporate the ESS into the
microgrid setting and study the impact of ESS on the achieved
level of autonomy of themicrogrid. To verify the effectiveness of
the ESS on the achieved PSS, data samples collected by the wind
test center [33] in 1month are employed to calculate the achieved
PSS of the microgrid in practice. We observe from Fig. 6 that for

Fig. 4. Forecasted demand and wind power as well as optimal dispatch of the DGs under different PSS targets: (a) , (b) , and
.

TABLE II
UNIT COMMITMENT OF THE DISTRIBUTED GENERATORS WITH TARGET

Fig. 5. Total operating cost per day under different time horizons.

Fig. 6. Achieved PSS versus the capacity of the ESS based on wind power
statistics collected in 1 month.
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all the PSS targets, 1) the proposed approach successfully meets
the design targets in the absence of ESS. For example, the
microgrid achieves a practical PSS of 52%, 78%, and 92%when
the PSS targets are set as , , and , respectively; 2) the
microgrid is more capable of functioning self-sufficiently as the
capacity of ESS increases [37]; and 3) the achieved PSS hits an
upper limit when the capacity of ESS is larger than a threshold.
From our simulations, this ESS threshold grows from 40 kWh, to
90 kWh, and to 120 kWh as the PSS targets decreases from 90%
to 70%, and to 50%, respectively. This provides a guideline on
determining the ESS size to achieve a desired PSS level.

To further analyze the variations of the energy stored in the
ESS in 1 day, we plot in Fig. 7 the evolution of the energy
stored in ESS under different target PSSs. The capacity of ESS
is set as 60, 90, and 120 kWh as in Fig. 7(a), (b), and (c) when
the PSS targets are equal to 90%, 70%, and 50%, respectively.
Due to practical concerns, the starting ( ) and ending limits
( ) of ESS in this work are set as around 10% of the
capacity of ESS, which are 10 kWh for all the cases. We
then observe that the events of charging and discharging
occur frequently during the time period between 0:00 A.M. and
10:00 A.M., when the forecasted wind power falls short of the
forecasted demand. Also note that the stored energy in the ESS
varies less remarkably as the microgrid tends to operate more
independently.

V. CONCLUSION

The unique characteristics of renewable-powered microgrid
have brought new challenges to the classic UC optimization task
of UC. We have shown that the traditional problem formulation
can be modified to incorporate the intermittency of the RESs,
emission limits on the carbon footprint, as well as the forecast
error that exists in demand and renewable power forecasts. Using
a duality-based approach, it has been demonstrated that an
analytical characterization of the optimal commitment and dis-
patch solutions for the DGs is available, which can be computed
very efficiently using a subgradient-based algorithm. The ap-
proach can be easily modified to incorporate other types of DGs
or RESs. Our study shows that the features of DGs can have a
great impact on the operation of UC strategy in microgrids,
which will be investigated in our future work.
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