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Theory of nanorod antenna resonances including end-reflection phase
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We present a fully analytic theory for nanorod resonances including the phase of reflection from the rounded
ends using a transmission line approach. It combines the circuit theory response of spherical nanoparticles
with standard transmission line theory using the Sommerfeld wave dispersion. The approach agrees well with
comprehensive numerical calculations.
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I. INTRODUCTION

Nanorods are of great interest in plasmonics for their
application to surface enhanced Raman spectroscopy [1],
antennas [2], solar cells [3,4], nonlinear optics [5,6], sensing
[7–10], and imaging [11,12]. Colloidal nanorods can be
wavelength tuned by variations to their diameter and length
[13]. A previous work has proposed a theory for the resonant
wavelength of the antenna scaling in the visible regime by
using the Sommerfeld wave dispersion [14]. That work set
the reflection phase equal to zero at the transition to the
round end of the nanorod, although accurate solutions require
accounting for the finite phase [15]. For flat end nanorods,
other works have shown a nonzero reflection phase that
can be calculated analytically [16–18], and these have been
used to model accurately the resonance response [19]. For
rounded end nanorods, numerical calculations have shown
that the reflection phase is nonzero [20] and actually strongly
dispersive over the visible near-IR regime. For nanoantenna
design, it is highly desirable to have a fully analytic theory to
calculate the nanorod resonances for rounded ends naturally
occurring for colloidal samples.

Here we use a circuit theory approach for nanoparticles to
solve for the nanorod resonances. Our approach combines the
circuit theory response of spherical nanoparticles [21,22] with
standard transmission line theory [23] using the Sommerfeld
wave dispersion [24]. We find a fully analytic theory for the
reflection phase and compare with comprehensive numerical
calculations.

II. CIRCUIT THEORY FOR NANORODS

Figure 1(a) shows the schematic of a nanorod, where r

is the radius of the nanorod and L is the length from end to
end. Figure 1(b) shows the equivalent circuit of the nanorod.
According to Ref. [21], we know that a nanosphere of radius r

made of noble metals (e.g., Ag, Au) can be treated as a circuit
“lumped nanoelement.” Considering an electromagnetic wave
E0 illuminating the sphere, the fields inside and outside the
sphere can be equivalent to three displacement currents, Iimp,
Isph, and Ifringe, which represent the impressed displacement
current source, the displacement current circulating in the
nanosphere, and the displacement current of the fringe field,
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respectively. Here, we consider the material of the sphere to be
metal, so the equivalent circuit for the optical wave interaction
with a sphere can be presented as the blue rectangular part in
Fig. 1(b). The impedances can be written as [21]

Zsph = (−iωε0εmπr)−1, Zfringe = (−iω2πrε0εd )−1, (1)

where εm = ε′
m + iε′′

m is the nanorod’s material permittivity, r

is the radius, εd is the permittivity of the dielectric medium
surrounding the nanorod, and ε0 is the background permittivity.

For rounded end nanorods, when the plasmonic resonance
for the optical wave interacts with the nanorod, we can treat the
nanorod as a cylinder plus a sphere. According to transmission
line theory, we can treat the cylinder as a transmission line with
impedance ZS , and regard the right part in Fig. 1(b) as a load,
with impedance ZL. So we can get the reflection Г from [25]

� = ZL − ZS

ZL + ZS

, (2)

where

ZS =
√

μ0

ε0

k0

β
, (3)

1

ZL

= 1

Zsph
+ 1

Zfringe
. (4)

Here, μ0 is the background permeability, k0 is the free-space
wave vector, and β is the propagation constant in the nanorod.

So, we can obtain the phase of the reflection � as

� = angle [�] . (5)

III. DISCUSSION AND CALCULATIONS

Figure 2 shows the phase of reflection as a function
of wavelength for different εd ; the nanorod has a radius
of 10 nm, and silver (Ag) is used as the metal, with its
dispersive permittivity fully considered [26]. It can be seen
that at long wavelengths, the phase tends to a constant value,
which suggests a perfect metal-like behavior. The dashed lines,
extracted for comparison from Fig. 3 of Ref. [20], are from
the simulation of a semi-infinite wire for the respective lowest
order propagating surface plasmon polariton mode, i.e., the
Sommerfeld surface wave. The solid lines show the data
calculated by Eq. (2).The analytic theory shows reasonable
agreement with the comprehensive simulations of Ref. [20].
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FIG. 1. (Color online) (a) A schematic of a nanorod. (b) Its
equivalent circuit.

Here, we compare the theory with comprehensive finite-
difference time-domain (FDTD) simulations of the resonances
of nanorods of varying size. Gold (Au) is used as the
metal, the relative permittivity values for gold are taken from
experimental measurements [26], the refractive index of the
dielectric medium surrounding the nanorod is 1.33, and the
nanorod has a diameter of 25 nm.

Figure 3 shows the resonant wavelength as a function
of nanorod length. The results show the linear relationship
between the resonant wavelength and the nanorod length. The
resonant wavelengths calculated with FDTD show a good
agreement with the analytic theory.

According to the cylindrical waveguide theory, we can get
the propagation constant of the Sommerfeld surface wave β in
the nanorod by [16]

K0 (pdr) I1 (pmr)

K1 (pdr) I0 (pmr)
= −εdpm

εmpd

, (6)

with In and Kn being the modified Bessel functions of first
and second kind of order n, where pm,d =

√
β2 − k2

0εm,d , εm,d

are the relative permittivities of the metal and dielectric, k0 =
ω/c, c is the speed of light in free space, ω is the angular
frequency of the electromagnetic wave corresponding to the
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FIG. 2. (Color online) Phase of the reflection � of the nanorod
for selected values of εd : εd = 2.8 (black), εd = 5.4 (orange), and
εd = 9 (green). The solid lines show the data calculated by Eq. (2)
and the dashed lines show the data from Ref. [20].
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FIG. 3. (Color online) Resonant wavelengths of 25 nm diameter
nanorods for different lengths. Red dots correspond to resonant
wavelengths calculated with FDTD, the green solid line corresponds
to the results from analytic theory, and the green dotted line
corresponds to the results if we assume � = 0.

resonant wavelength, and r is the cylinder radius. Considering
the propagation of the surface wave along the rod and reflection
at the ends, we can calculate the Fabry-Pérot resonances of a
nanorod,

β (L − 2r) + � = mπ, (7)

where m is the whole-number resonance order.
In the past, an effective rod length Leff was given by

subtracting the ends and setting � = 0 [14],

βLeff = mπ. (8)

So, according to Eqs. (7) and (8), we can obtain the relationship
between Leff and the resonant wavelength, as shown by the
dotted line in Fig. 3. There still exists a shift between the theory
presented here and this effective length scaling. It is possible
to define a new effective length L′

eff based on the best fit to the
theory while still assuming � = 0. In this case, we find that
L′

eff = 1.2(L − 2r) = 1.2Leff . Therefore, an accurate effective
length scaling is possible, as noted in Ref. [14]; however, the
length should be revised to account for the finite phase of
reflection at the rod ends.

Figure 4 shows the phase of reflection as a function of
wavelength from both comprehensive numerical calculations
and circuit theory for three different diameter nanorods. The
differences are less than 10°. Overall, we find good agreement
in the predicted phases by both methods.

The phase of reflection of the semi-infinite waveguide
agrees with the phase for a finite waveguide. This is an
interesting result, which implies that the fields on either side
of the waveguides do not significantly influence each other.
We have seen good agreement between numerical simulations
of the finite rods and the theory based on the semi-infinite
rods even for cases (L − 2r) < 2r . For example, for a rod of
diameter 25 nm, we saw good agreement for (L − 2r) = 9 nm.

The quasistatic approximation applies for small particles
(r � λ). In this case, the phase of the electromagnetic field
is almost constant in the local region. Therefore, we can
treat the responses of the optical field at the nanorod ends
without retardation. Equation (1) is only valid within the
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FIG. 4. (Color online) Phases of the reflection � as a function of
wavelengths for (a) 20, (b) 25, and (c) 30 nm diameter nanorods.

quasistatic approximation and this also ensures a single
channel matching for Eq. (4). For larger diameters, these
results will no longer be valid. So, for larger nanorods, the
quasistatic approximation would break down due to retardation
effects [27]. We have tested this breakdown by increasing the
diameter of the nanorods for a constant resonance wavelength
of 700 nm (scaling the geometry accordingly) and found that
the variation in the phase between the analytic theory and
FDTD computation begins to exceed 10° when the diameter
of the nanorod is larger than 70 nm.

Figure 5 shows a image map of the phase shift difference
between the theory and simulation, as a function of nanorod
diameter and (L − 2r). As described above, this figure shows
that when the nanorod diameter exceeds 70 nm, the theory
becomes inaccurate (i.e., it departs from the comprehensive
simulation results), which shows the breakdown of the qua-
sistatic approximation for this size.
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FIG. 5. Phase shift between the theory and simulation results as
a function of nanorod diameter and (L − 2r). The grayscale shows
the value of (�theory − �simulation)/π .

The length of the nanorods does not physically limit the
theory since it includes the retardation from propagation and is
not limited by quasistatic assumptions. Indeed, the theory can
be applied to higher order resonances and we have extended
this to L � 2r . For example, for a rod of diameter 25 nm,
we saw good agreement for (L − 2r) = 143 nm. In practice,
however, losses along the rod will limit the strength of the
resonances for longer rods.

We next consider the width of the resonance peak. Consid-
ering the propagation loss in the nanorod, the quality factor of
the circuit Q can be written from Fabry-Pérot analysis as

1

Q
= 1 − e−4β ′′(L−2r)|�|2, (9)

where β ′′ is the imaginary part of β.
So, the bandwidth B is

B = ω0

Q
, (10)

where ω0 is the resonant frequency.
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FIG. 6. (Color online) Bandwidths of the resonance peak as a
function of nanorod length. The diameter of the nanorods is 30 nm.
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Figure 6 shows the bandwidth as a function of nanorod
length. Good agreement is found between the simulation
results and the values calculated from Eq. (10).

IV. CONCLUSIONS

In conclusion, we have presented a fully analytic theory for
nanorod resonances including the phase of reflection from
the rounded ends by using a transmission line approach
combined with a nanocircuit theory of the rounded ends.
The theory shows good agreement with calculations from
past works as well as comprehensive numerical calculations
presented here. This work will be useful in the rapid design of
nanorod geometries to achieve desired resonance wavelengths.
Furthermore, it is possible to envision extending this approach
to more generalized scenarios, such as ellipsoidal end faces,
or coupled nanorods.
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APPENDIX: FDTD SIMULATIONS

In this paper, the nanorods were simulated by the finite-
difference time-domain (FDTD) method (Lumerical FDTD
8.1). Polarization of the incident field was parallel to the
long nanorod axis. The simulation domain was terminated
with perfectly matched layers. The complex permittivity
of the metal was modeled using the experimental data of
Johnson and Christy [26]. To calculate the cross sections of
the nanorods, we employed the formalism of the total field
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FIG. 7. (Color online) Normalized extinction cross sections as a
function of wavelength for various nanorod lengths. The diameter of
the nanorods is 30 nm.

scattered field (TFSF). We introduced a set of two-dimensional
power monitors, which formed two surfaces enclosing the
nanorods: one inside the TF region (monitor 1) and the other
one in the SF region (monitor 2). We calculated the absorption
cross section of the nanostructures by evaluating the net power
flow into monitor 1. The total power exiting monitor 2 was
used for the calculation of the scattering cross section. The
extinction cross section was determined by the summation of
scattering and absorption cross sections.

Figure 7 shows the normalized extinction cross sections as
a function of wavelength for various nanorods lengths from 40
to 120 nm. The diameter of the nanorods is 30 nm. According
to the peaks, we can obtain the locations of the resonant
wavelengths.
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Sönnichsen, The optimal aspect ratio of gold nanorods for
plasmonic bio-sensing, Plasmonics 5, 161 (2010).

[8] J. Yi, J. M. Lee, and W. I. Park, Vertically aligned ZnO nanorods
and graphene hybrid architectures for high-sensitive flexible gas
sensors, Sens. Actuators, B 155, 264 (2011).

[9] L. Vigderman, B. P. Khanal, and E. R. Zubarev, Functional gold
nanorods: Synthesis, self-assembly, and sensing applications,
Adv. Mater. 24, 4811 (2012).

[10] K. M. Mayer and J. H. Hafner, Localized surface plasmon
resonance sensors, Chem. Rev. 111, 3828 (2011).

[11] B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi,
Gold nanorod−photosensitizer complex for near-infrared flu-
orescence imaging and photodynamic/photothermal therapy in
vivo, ACS Nano 5, 1086 (2011).

[12] H.-G. Liao, L. K. Cui, S. Whitelam, and H. M. Zheng, Real-time
imaging of Pt3Fe nanorod growth in solution, Science 336, 1011
(2012).

[13] S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M.
A. El-Sayed, Femtosecond transient-absorption dynamics of

165401-4

http://dx.doi.org/10.1021/jz2000613
http://dx.doi.org/10.1021/jz2000613
http://dx.doi.org/10.1021/jz2000613
http://dx.doi.org/10.1021/jz2000613
http://dx.doi.org/10.1021/nl101921y
http://dx.doi.org/10.1021/nl101921y
http://dx.doi.org/10.1021/nl101921y
http://dx.doi.org/10.1021/nl101921y
http://dx.doi.org/10.1002/adfm.200902234
http://dx.doi.org/10.1002/adfm.200902234
http://dx.doi.org/10.1002/adfm.200902234
http://dx.doi.org/10.1002/adfm.200902234
http://dx.doi.org/10.1039/c1cc10638d
http://dx.doi.org/10.1039/c1cc10638d
http://dx.doi.org/10.1039/c1cc10638d
http://dx.doi.org/10.1039/c1cc10638d
http://dx.doi.org/10.1038/nnano.2010.278
http://dx.doi.org/10.1038/nnano.2010.278
http://dx.doi.org/10.1038/nnano.2010.278
http://dx.doi.org/10.1038/nnano.2010.278
http://dx.doi.org/10.1103/PhysRevLett.107.057402
http://dx.doi.org/10.1103/PhysRevLett.107.057402
http://dx.doi.org/10.1103/PhysRevLett.107.057402
http://dx.doi.org/10.1103/PhysRevLett.107.057402
http://dx.doi.org/10.1007/s11468-010-9130-2
http://dx.doi.org/10.1007/s11468-010-9130-2
http://dx.doi.org/10.1007/s11468-010-9130-2
http://dx.doi.org/10.1007/s11468-010-9130-2
http://dx.doi.org/10.1016/j.snb.2010.12.033
http://dx.doi.org/10.1016/j.snb.2010.12.033
http://dx.doi.org/10.1016/j.snb.2010.12.033
http://dx.doi.org/10.1016/j.snb.2010.12.033
http://dx.doi.org/10.1002/adma.201201690
http://dx.doi.org/10.1002/adma.201201690
http://dx.doi.org/10.1002/adma.201201690
http://dx.doi.org/10.1002/adma.201201690
http://dx.doi.org/10.1021/cr100313v
http://dx.doi.org/10.1021/cr100313v
http://dx.doi.org/10.1021/cr100313v
http://dx.doi.org/10.1021/cr100313v
http://dx.doi.org/10.1021/nn102722z
http://dx.doi.org/10.1021/nn102722z
http://dx.doi.org/10.1021/nn102722z
http://dx.doi.org/10.1021/nn102722z
http://dx.doi.org/10.1126/science.1219185
http://dx.doi.org/10.1126/science.1219185
http://dx.doi.org/10.1126/science.1219185
http://dx.doi.org/10.1126/science.1219185


THEORY OF NANOROD ANTENNA RESONANCES . . . PHYSICAL REVIEW B 91, 165401 (2015)

colloidal gold nanorods: Shape independence of the electron-
phonon relaxation time, Phys. Rev. B 61, 6086 (2000).

[14] L. Novotny, Effective wavelength scaling for optical antennas,
Phys. Rev. Lett. 98, 266802 (2007).

[15] T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and
N. F. van Hulst, λ/4 Resonance of an optical monopole antenna
probed by single molecule fluorescence, Nano Lett. 7, 28 (2007).

[16] R. Gordon, Reflection of cylindrical surface waves, Opt. Express
17, 18621 (2009).

[17] J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl,
C. Etrich, T. Pertsch, F. Lederer, and K. Kern, Fabry-pérot
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