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A B S T R A C T   

We propose an asymmetric distribution of a hexagonal lattice for achieving near-zero group velocity with 
negative group delay. This study reports the effect of the continuous geometric perturbation on the photonic 
band diagram and consequently its impact on phase velocity, group velocity, and effective refractive index. We 
provide a promising method for modifying the photonic band diagram to obtain an exotic dispersion diagram. 
With this broadband spanning from the E band to the L band, the light pulse envelope travels with almost zero 
velocity and is promising for application in a wide variety of light-based devices.   

1. Introduction 

Planar photonic crystals [1] control localized slow light by slowing 
down the group velocity and are of interest in many light-based devices, 
such as photonic integrated circuits [2], waveguides [3,4], wide-band 
reflectors [5], filters [6], lasers [7], and multimode guided wave len-
ses [8,9]. Group velocity 

(
vg
)

is the phase response [10,11] of a me-
dium that is computed through the derivative of the phase velocity 
vp with respect to a certain range of frequencies. 

A light pulse containing a series of sine waves that each experiences 
different phase responses can be steered via dexterous engineering 
matter. The dispersion diagram as a result of this diversity in phase 
response in an artificial material provides useful information that ex-
plains how a light pulse envelope interacts with matter during propa-
gation in a transmission path. Three types of dispersion occur in various 
types of optical components, including artificial and/or normal media: 
no dispersion (vg=vp), normal dispersion (vg<vp), and anomalous 
dispersion (vg > vp). 

In terms of applications, shortening or reducing transmission delays 
can play a critical role in ultrahigh optical switching elements [12] and 
today’s complex modulation techniques in modern RF wireless 
communicating platforms [12]. In addition, all-optical regeneration of a 
signal [13] is desired to avoid polarization mode dispersion [14,15], 
eliminate influences of noise, and reduce limitations associated with 

wavelength-division multiplexed transmission [16]. 
Transmitting a light pulse through a chromatic dispersive material 

with high accuracy, low loss, and no distortion in fiber optics and/or any 
on-chip elements is a hard task. However, an advance in phase com-
pensates for positive group delay of the transmission line and also assists 
in increasing the efficiency of amplifiers [17,18]. Negative group delay 
[19] as a unique phenomenon gives rise to an advance in phase, which 
does not occur in most transmission lines of electromagnetic waves. 
Considering a traversing electromagnetic wave through a dispersive 
material, an envelope of magnitude experiences an advanced shift rather 
than delay via negative group delay. 

This promising effect has been studied in both electronic circuitry 
[20,21] and high-frequency structures [22,23]. For eik(ω)z as a transfer 
function of a normalized plane wave propagating along the z-axis, its 
complex wave number is k(ω) = α(ω) + iβ(ω). The corresponding 
phase and group delays at any particular point on the z-axis are 

Tp =
z
vp

=
α(ω)

ω z, Tg =
z
vg

=
d

dω (α(ω) )z,

where vp and vg are the phase velocity and the group velocity, 
respectively. Furthermore, according to Sommerfeld, the front end of 
the wave packet with velocity vf has the speed of light (c) in a vacuum 
since 
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Tf =
z
vf

= lim
ω→∞

α(ω)
ω z.

Under such conditions, even if the rest of the envelope propagates 
with a superluminal velocity (negative group delay), the continuation of 
the advanced phase of the whole wave packet would give rise to no 
distortion of the traversing wave packet. 

Here we study the effect of varying the density of the dielectric 
distribution on controlling the group index via periodic geometric 
transition. The suggested optical component provides a unique time- 
evolving wave packet from a given initial state that accumulates an 
advanced phase for a broadband range of wavelengths near the band 
edge. 

This class of media, modulated photonic crystals [24], with an 
asymmetric nature of periodic structures exploits the unbalanced den-
sity of states not only in the first Brillouin zone but also through the 
entire lattice due to continuously broken symmetries. In summary, a 
smooth disordered hexagonal-like cluster in a two-dimensional lattice is 
distributed through the entire suggested component, in which the vol-
ume of air (cylindrical holes) changes only along Γ-M. A left-handed 
material with a negative gradient of the wavevector (k′

(ω) < 0) 
forms in a periodic lattice to create negative group delay, which we 
discuss in this study. 

2. Left-handed versus right-handed materials 

Light as a wave oscillates due to the fluctuation of two components 
( E→ and H→) that ideally cross each other at two trajectory planes that are 
perpendicular to each other. From a complete wave point of view in an 
inhomogeneous medium with no spatial filtering, the creation of a 
partially polarized light pulse can be affected by either horizontal or 
vertical components in the case of an asymmetric distribution of either 
of the fields through the medium. Therefore, such propagating wave 
packets experience a modification in both wavelength and magnitude 
(Fig. 1a). 

As is clear from Fig. 1, one of the arrows (red or blue) may occur in 
such a transition. Thus, evolving ( E→andH→) fields are possible by our 
considering conservation of energy. In Fig. 1b, variation of only the 
wavelength in an inhomogeneous medium such as a photonic crystal 
creates two types of evolution from the initial states (ωi), which results 
in a particular angular frequency of the whole envelope (ωg), which 
determines the group velocity of the wave packet. In a special case, the 
coupled-mode theory on a subwavelength scale is based on the pertur-
bation of the refractive index through the lattice, which explains the 
possibility of producing a complete backward wave scattering due to 
optically linear parametric interaction (Fig. 1c). 

This gives rise to the coalescence of two eigenstates (Fig. 1d) near the 
band edge, which can result in diverse group delays. In photonics sci-
ence, for an elaborate understanding of any type of dispersion in any 
region (linear or nonlinear) for given heterogeneous interfaces in (meta) 

Fig. 1. Interaction of waves (wave packet) and types of group delays. (a) Time variation transition of a wave packet through real space form either ascendant to 
descendant group velocities or vice versa. (b) Two-dimensional wave transition from the initial frequency ωi to the frequency with the dominant group velocity ωg 

forms either +ωgor− ωg , which are different in the directions of motion. (c) Trajectories of two possible envelopes that differ in sine components and are the same in 
the cosine component. (d) Cancelation of two modes due to the opposite gradient of envelope transitions. (e) The dimensionless quantity ωa/2πc with lattice constant 
a = 0.5 μm versus the wavevector in a hexagonal lattice printed in a silicon slab with a thickness of 0.32 μm on top of a 1 μm silicon dioxide substrate. (f) Zoomed-in 
band diagram in the Γ-M-Γ direction showing the symmetries in the optical path with the creation of a photonic bandgap. BZ, Brillion zone. 
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material, there should be a map to steer light in a dexterous manner. For 
instance, computation of the band diagram is a necessary step to have a 
seminal record of electromagnetic waves interacting with any type of 
matter, including homogeneous or inhomogeneous matter. 

Thus, instead of the use of time-independent Schrödinger equation 
[25], use of the master equation, which is the so-called eigenvalue 
equation [26], produces eigenvalues of all possible states. By consider-
ation of the linearity of the Maxwell equation for both fields in time, 
E(r, t) = E(r)eiωtandH(r, t) = H(r)eiωt, the solution via Fourier theory will 
not construct the possible solutions for its given components. Instead, 
the combination of all propagating modes (Bloch envelope) as a solution 
for both fields can be obtained by solving the given master equation with 
reference to each of the computed ω [27]. To have a clear image of the 
propagation modes as a solution for the Maxwell equations, one needs to 
eliminate the electric field E and apply the Bloch envelope for broken 
symmetries in the two fields and a transverse guiding mode for only the 
magnetic field H [27]: 

Θ H(r) =
(ω

c

)
2H(r),

where ΘH(r) ≡ ∇×

(
1

ε(r)∇ × H(r)
)

exhibits a functional form of the 

dielectric to determine the magnetic field. If we consider Hamiltonian 
system for the suggested system, since the Hermitian operator (Θ) de-
rives all eigenstates for the magnetic fields, the determination of 
eigenstates for the electric field would be the next step. Therefore, 
applying a translation of any symmetry, such as in a photonic crystal, 
gives rise to the dispersion relation in which the splitting bands are 
expected. 

Implementing Bloch’s theorem via the computational tool MIT 
Photonic Bands (MPB) [28], we conducted a simulation with a 
high-resolution finite-element method in which the grid elements for a 
three-dimensional structure, a hexagonal lattice, were applied. The 
computed photonic band structure for such a lattice (cylindrical air) 
printed in a silicon film with a thickness of 0.32 μm on top of 1 µm 
silicon dioxide as a substrate is depicted in Fig. 1e. 

The suggested photonic crystal possesses propagating modes for both 
transverse electric (TE)-like polarization and transverse magnetic (TM)- 
like polarization. However, the group index of the TM-like mode is 
higher than that of TE-like mode, giving rise to a slow light mode [29]. 
In addition, the evolutions of TE-like and TM-like modes are dissimilar 
because of the different wave equations. Furthermore, the bandgap 
closure and band flips via any perturbation parameters affect only 

Fig. 2. Swinging band diagram for a hexagonal lattice for the suggested lattices with (a) the radii equal to 0.31 and having a photonic bandgap (PBG) around 0.3 in 
the Γ-M direction and (b) the radii equal to 0.39 and having a PBG around 0.33 in the Γ-M direction. (c) and (d) The zoomed-in PBG part of the photonic bandgaps in 
(a) and (b), respectively. (e) Swinging of the first band to the higher angular frequencies with increase of the radii. (f) Swinging of the second band to higher angular 
frequencies with increase of the radii. PhC, photonic crystal; TM, transverse magnetic. 
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TM-like bands rather than TE-like modes. This is due to the symmetry 
properties of the band edge in TM-like modes [30]. 

In Fig. 2, we show results of calculations for only the TM mode, 
which corresponds to the eigenmodes of the z-component of an applied 
electric field (Ez) in the proposed hexagonal lattice, summarized in three 
directions (Γ, M, and K) due to two-dimensional symmetries in the first 
Brillouin zone. Furthermore, bands computed with the finite-element 
method show power disintegration along the photonic bandgap in the 
Γ-M direction. However, the light flow is deviated to the other symmetry 
direction due to joining of computed bands at the K points. 

Thus, we expect a symmetric band diagram in the second Brillouin 
zone due to the symmetric nature of the lattice in one of the directions 
(Fig. 1f). This diagram provides seminal information for steering light in 
an engineered material. For instance, for such a photonic band structure, 
both the left-handed material zone and the right-handed material zone 
of a designed photonic crystal can be recognized because of different 
gradients of wavevectors introduced around the photonic bandgap. In 
addition, this zone is subjected to geometric order and swings via any 
variation of the design parameters. For example, we can achieve a 
swinging stopband along with the communication range of frequencies 
by means of either perturbation of the lattice or changing one design 
parameter, such as the lattice constant or a radius. 

In Fig. 2, the swinging stopband is depicted for both bands sepa-
rately. Since the gradient of the wavevector k(ω) takes both negative and 
positive values in each portion of the photonic bandgap (positive values 
for the first band and negative values for the second band) with respect 
to the direction of propagation in the reciprocal lattice (e.g., in the Γ-M 
direction), the type of dispersion follows these different values as well. 

However, we can examine this phenomenon only from the trans-
mission spectrum, but the band structure provides more specific infor-
mation about the effect of changing any parameter on any of the specific 
modes through the computed dispersion diagram. This also helps us to 
calculate the gradient of the wavevector (e.g., first and second order) 
with respect to the given frequency ω in both reciprocal space and 
Cartesian space. Furthermore, we want to show the effect of different 
values (either negative or positive) of the gradient of the wavevector in a 
photonic crystal. 

In Fig. 3, we provide a slice of an unsteady simulation performed 
with the finite-difference time-domain method for the two-dimensional 
hexagonal lattice to specify differences in any type of chromatic 
dispersion. In other words, left-handed materials and right-handed 
materials are the result of chromatic dispersion, and both influence 
the angle of radiation due to the order of the phase velocity for an 
incident wave propagating through the lattice. According to Snell’s law, 
the incident wave refracted from a positive index material (PIM) to a 
negative index material (NIM) follows the equation nPIMsinθPIM =

nNIMsinθNIM and the backward bending of the ray represents the negative 
angle of refraction in the photonic crystal, which is depicted in Fig. 3b. 

Thus, satisfying Snell’s law with a negative angle of refraction is 
possible only by multiplication with negative values of the refractive 

indices. As a result, the subscripts NIM and PIM are assigned to pa-
rameters in the equation for accurate analysis of chromatic dispersion in 
left-handed materials. In Fig. 3b, the nature of first-order dispersion 
varies for the same light pulse profile but different radii since chromatic 
dispersion depends on the gradient of the wavevector as it follows the 
band diagram. So, any perturbation in geometry gives rise to a swinging 
photonic band diagram, and reconstruction of different values of the 
group velocity (k′

(ω) ≡ ∂k/∂ω = 1/vg) is a possible method. 
Consequently, we conclude that changing the optical parameters in 

the geometry of lattices such as radii or the lattice constant gives rise to 
different types of first-order dispersion. All in all, for a particular fre-
quency range, the gradient of the wavevector (∂k

∂ω,
∂2k
∂ω2) can be either 

negative or positive, which influences the nature of the dispersion. 
However, to create a broadband negative refractive index to keep the 
entire envelope distortionless, one needs a dexterous approach to exploit 
the geometric effect on the photonic band diagram, which we discuss in 
the following section. 

3. Modeling the structure via an asymmetric lattice 

Per our previous discussion, use of MIT Photonic Bands as an 
eigenmode solver via the plane wave expansion method to obtain the 
accurate photonic band structure gives us a connection between given 
electromagnetic radiation and optical medium properties. It is worth 
mentioning the advantages of choosing a hexagonal lattice since it is 
capable of realizing a bandgap in both TM and TE modes simulta-
neously. In other words, proficiency of having two-dimensional sym-
metry in such a lattice, dielectric globs, and connective veins establish a 
photonic bandgap to control light efficiently. 

To have a deep understanding of the origin of a possible bandgap in 
the suggested lattice, one needs to be aware of some fundamental no-
tions. First of all, distributed electric fields in a lattice with two com-
ponents (air and a dielectric) results in the lowest-order mode (first 
band) preferring to reside in higher-index regions, so it is called a 
dielectric band. Unlike the dielectric band (first band), the second-order 
band prefers the realization of electric field power in air (the air band). 
Once these two modes becomes orthogonal to each other, the creation of 
a gap is possible due to the interference of two waves with the same 
periodicity for the same frequencies (see the discussion in the caption for 
Fig. 1). 

Thus, some band frequencies cannot propagate in that particular 
direction. What if we break the periodicity by changing the distribution 
of the dielectric? For example, reducing or increasing the diameter of the 
cylindrical holes (air) in a two-dimensional lattice will break the peri-
odic dielectric continuously. According to our former results, the band 
structure fluctuates with respect to such variation and gives rise to 
swinging in the energy level with respect to the degrees of variation. We 
studied the effect of such variation and propose an approach to explain 
our novel modeling structure. The more symmetry is the more similar 
Bragg grating appears in the computed directions. 

Fig. 3. Light flow through the photonic crystal (a = 0.5 μm, silicon thickness 0.32 µm, silicon dioxide thickness 1 µm) illustrating first-order dispersion in (a) right- 
handed material, (b) left-handed material interacting with a 45◦ tilted plane wave source, (c) left-handed material, and (d) right-handed material interacting with a 
point source. 
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Otherwise, the cancelation of two bands will be replaced with the 
accumulation of phase. In other words, applying a linear variation of the 
radii in each column (unit cell) in a hexagonal lattice gives rise to dy-
namic variation of the wavevector as it is propagating through the lat-
tice. Let us assume propagation incident in the Γ-M direction and that 
the radius of unit cells in the z-direction varies (Δr = D2 − D1) smoothly 
to avoid any Fresnel reflection based on no optical impedance mismatch. 
Because of the dependency of the wavevector on changing radii, the 
gradient of the wavevector with respect to the frequency (∂k(z)/∂ω) will 
be either descendant (negative) or ascendant (positive). Thus, the type 

of chromatic dispersion can vary, as shown in Fig. 4. 
We applied a Gaussian pulse to compute the transmission spectrum 

of both structures including an ascendant and a descendant dielectric 
volume distributed in the lattice. We used the finite-difference time- 
domain method in MIT Electromagnetic Equation Propagation (Meep) 
[31] to illustrate different optical properties in the transmission spec-
trum for a particular frequency range in both disordered lattices. The 
simulation was done in our suggested three-dimensional structure with a 
two-dimensional photonic crystal array of cylindrical holes (air) printed 
in silicon film with a thickness of 0.32 μm on 1 µm silicon dioxide as a 

Fig. 4. Dispersion in (a) a symmetric and (b) an asymmetric perturbed hexagonal lattice. BZ, Brillion zone.  

Fig. 5. (a) Effective index variation by the changing radii in a hexagonal lattice. (b) An asymmetric hexagonal lattice and a unit cell possessing perturbed radii that 
create a different path in the reciprocal space. (c) Refractive index fluctuation through the entire lattice for a symmetric hexagonal lattice showing excess phase 
accumulation in the propagation direction. (d) Refractive index fluctuation through the entire lattice for a asymmetric hexagonal lattice showing excess phase 
accumulation in the propagation direction. BZ, Brillion zone. 
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substrate. 
Our suggested metamaterial composed of multiple clustering hole 

meshes generates an exotic band diagram because of broken symme-
tries. This platform can be used to control the density of states near the 
band via continuous perturbation of parameters (radii) and to widen the 
negative band in the communication wavelength range. 

In Fig. 5a, the refractive index with negative values fluctuates, while 
the radii change from 0.31 to 0.39 in the lattice shown (Fig. 5b). As is 
clear from Fig. 5a, the negative effective index covers the bandwidth in 
the telecom range consisting of the extended band E, the short band S, 
the conventional band C, and the long band L. However, this broadband 
negative index region has functionality depending on the ori-
entation (Γ-M). Thus, this broadband functionality is based on con-
nectivity rather than a consequence of resonating electromagnetic 
waves in subwavelength structures. In Fig. 5c, the proposed lattice with 
continuous perturbation of radii shows two types of distributions: one 
with a symmetric hexagonal lattice that consists of two Brillouin zones 
and the other a cluster, for which before entering the symmetric second, 
Brillouin zone, light traverses to the perturbed stack. To understand the 
difference in the types of distributing clusters, one can determine their 
effective refractive index fluctuation through the Γ-M light path shown 
in Fig. 5b–d. The perturbing effect in these two sections merely provides 
radii for 0.31–0.39 in four steps, which is not what the real structure 
under study refers to. In other words, the proposed structure experiences 
perturbed radii with very smooth transitions of radii to have lengthy 
devices for realistic applications. 

For broadband propagation, light pulses are distorted because of 
different phase velocities at each frequency. Thus, the complexity of 
signals at the end of the light path is inevitable because of the generation 
of multiple intrinsic modes that each exhibit nonlinear group delay. 
Dispersion is a characteristic originating from the environment (media) 
and depends on the properties of the source as well. That is why char-
acterizing the group delays extracted from each mode is considered 
indispensable, and is used as a parametric inversion to retrieve the signal 
containing the information. Here we show the difference between two 
suggested structures with specific group delays. 

In Fig. 6, the type of distributing clusters in a specific lattice, 
continuously perturbed radii, influences the group delay in any transi-
tion through the light path. According to the gradient of phase velocities 
of the symmetric distribution and the asymmetric distribution, the one 
that does not enter the second Brillouin zone experiencing the pertur-
bation effect has a smooth group delay rather than the cluster with the 
symmetric distribution. In our suggested structure, the continuously 
perturbed lattice, which is a proper platform for broadening the band 
with almost zero group delay, eliminating frequent positive values of the 
group delay in each transition to the second Brillouin zone, plays a 
destructive role. 

Furthermore, mismatching of the phase of two clusters with different 
effective refractive indices causes asymmetric values of the group delays 
in each interval. Therefore, the nonlinear accumulation of group delays 
at the end of the light path gives rise to a light pulse distorted in a 
complex manner. Unlike the symmetric distribution of the cluster in 

Fig. 6. (a) Group velocity with radii varying from 0.31 (black) to 0.39 (pink) and (b) the zoomed-in region with negative group velocity. (c) The symmetric dis-
tribution accumulates group delay in each transition from the first Brillouin zone to the second one and weak compensation for the transition of perturbing radii. (d) 
Asymmetric distribution with smooth group delay and compensating group delay in each transition of perturbing radii. 
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photonic crystals, broken symmetries produce a proper platform that not 
only eliminates the accumulation of group delays in the middle of the 
two Brillouin zones but also provide symmetric values of the group 
delays in each perturbed transition, which compensate each other. 

4. Conclusion 

We have presented a new method of tailoring photonic crystals to 
form a dynamic wavevector gradient through a continuously perturbed 
lattice. The exotic photonic band diagram gives rise to the broadening of 
the band in the negative refractive index region. This unique band di-
agram is due to the connectivity of stacks rather than resonance in the 
subwavelength structure. This approach, smooth variation of the 
dielectric distribution, spreads the photonic band edge toward higher or 
lower frequencies contingent on the type of perturbation, either low to 
high density or high to low density. This produces broadband near-zero 
group delay with k′

(ω, r→) < 0. 
In addition, we compared the two types of perturbed radii through 

the proposed lattice. We realized both symmetric and asymmetric hex-
agonal clusters via modifying the unbalanced distribution of the 
dielectric through the entire component. The asymmetric lattice is 
suggested for eliminating excess phase accumulation in the light path. 
The suggested optical component and the reported approach provide a 
promising technique to obtain a unique platform for producing near- 
zero group delay by covering a broadband range of frequencies adja-
cent to the photonic band diagram and keeping the power flow away 
from dissipation through the transmission line. 
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