TM<sub>110</sub>-MODE RESONATORS: Simple Configurations For Highly Flexible Waveguide Filter Designs



Jens Bornemann

Department of Electrical and Computer Engineering University of Victoria, Victoria, BC Canada V8W 3P6

#### **Smain Amari**

Department of Electrical and Computer Engineering Royal Military College, Kingston, ON Canada K7K 7B4





**Uwe Rosenberg** Marconi Communications GmbH D-71520 Backnang, Germany

International Workshop on Microwave Filters – ESA – CNES - September 2004

## Outline

### Motivation

- **>** TM<sub>110</sub>-Mode Resonators
- Design Guidelines
- **Design Results**
- Non-Resonating Node Model
- Design Variations
- Conclusions

## Motivation

### Find a waveguide filter configuration

- which allows the number and locations of transmission zeros to be as flexible as possible,
- whose topology is independent of the number and locations of transmission zeros,
- > which leads to a relatively compact design,
- which can be manufactured by standard waveguide fabrication techniques,
- which does not require post-assembly tuning.

## **TM<sub>110</sub>-Mode Resonators - Advantages**

- Resonances are based on TM<sub>110</sub>-mode cavities allowing lower-order modes to generate cross/by-pass coupling.
- > The maximum number of transmission zeros equals the number of  $TM_{110}$ -mode cavities.
- ➢ The locations of transmission zeros are arbitrary, and simple design guidelines dictate their position with respect to the passband.
- Each transmission zero is independently controlled as each resonance is capable of creating its own transmission zero.
- The filter topology is in-line and, therefore, ideally suited to fit standard waveguide manufacturing technologies.
- > Due to the  $TM_{110}$ -mode operation, the cavities are short. An N-pole  $TM_{110}$ -mode filter usually requires less space than a comparable dual-mode filter based on  $TE_{101/011}$  modes.

## **TM<sub>110</sub>-Mode Resonators - Disadvantage**

- Cascaded TM<sub>110</sub>-mode cavities cannot be designed by standard coupling matrices because the standard interresonator coupling matrix formulation fails to capture the physical interactions of fields and modes involved.
- Therefore, a new coupling scheme based on so-called nonresonant nodes is developed and presented.

# TM<sub>110</sub>-Mode Resonators



#### **Resonances**

$$f_{r}(TM_{110}) = \frac{v_{c}}{2} \sqrt{\frac{1}{a^{2}} + \frac{1}{b^{2}}}$$
$$f_{r}(TE_{101}) = \frac{v_{c}}{2} \sqrt{\frac{1}{a^{2}} + \frac{1}{c^{2}}}$$
$$f_{r}(TE_{011}) = \frac{v_{c}}{2} \sqrt{\frac{1}{b^{2}} + \frac{1}{c^{2}}}$$

Cavity dimensions a, b, c selected such that

- TM<sub>110</sub> resonates
- TE<sub>10</sub>, TE<sub>01</sub> do NOT resonate

## TM<sub>110</sub>-Mode Resonator –The Singlet Coupling Mechanism

Coupling is predominantly magnetic. An incoming  $TE_{10}$  mode excites both  $TE_{10}$  and  $TM_{11}$  in the cavity.



### **Design Guidelines – Single Cavity** 1. Transmission Zero Below Passband



#### 2. Transmission Zero Above Passband



#### **3. No Transmission Zero**



### **Design Guidelines – Two Cavities** 1. Two Transmission Zeros Below Passband



#### 2. Two Transmission Zeros Above Passband



#### **3. Two Transmission Zeros, One Below, One Above Passband**



4. No Transmission Zeros



### **Design Results - Filter Examples** Four-Pole Filter With Chebyshev Response



#### **Four-Pole Filter With Elliptic-Function-Type Response**



### Four-Pole Filter With Three Transmission Zeros Below Passband



### Four-Pole Filter With Four Transmission Zeros Below Passband



### Four-Pole Filter With Four Transmission Zeros Above Passband



### Measurement

(cutter radius included using µWave Wizard)



## **Coupling Scheme for Cascaded Singlets**



### **Conventional Design**

[changing a single cross-coupling moves all transmission zeros]



### **Design with Singlets**

[changing a single bypass-coupling moves only one transmission zero]



### Non-Resonating Node Model (NRNM)



## **Design Variations:** Add a Resonant Iris



# **Three-pole filter: 2 TM**<sub>110</sub> **cavities + resonant iris**



### **Seven-pole Quasi-Highpass Filter:** 3 TM<sub>110</sub> cavities + four resonant irises



## Conclusions

- **Cascaded TM<sub>110</sub>-mode resonators offer an attractive solution for in-line** waveguide bandpass filters with arbitrarily located transmission zeros.
- These filters have simple geometries, which lend themselves to design by accurate and fast CAD tools, but retain a high flexibility as to the number and locations of transmission zeros.
- A new coupling matrix approach based on the Non-Resonant Node Model aids in the design of the filters.
- **Excellent agreement with measured data** is demonstrated.
- TM<sub>110</sub>-mode resonators are shorter than comparable cavities based on half-wavelength resonances.

## Further Reading

- U. Rosenberg, S. Amari and J. Bornemann, "Inline TM<sub>110</sub>-mode filters with high design flexibility by utilizing bypass couplings of non-resonating TE<sub>10/01</sub> modes", *IEEE Trans. Microwave Theory Tech.*, Vol. 51, pp. 1735-1742, June 2003.
- U. Rosenberg, S. Amari and J. Bornemann, "Mixed-resonance compact in-line pseudoelliptic filters", in 2003 IEEE MTT-S Int. Microwave Symp. Dig., pp. 479-482, Philadelphia, USA, June 2003.
- S. Amari, U. Rosenberg and J. Bornemann, "Singlets, cascaded singlets and the nonresonating node model for advanced modular design of elliptic filters", *IEEE Microwave Wireless Component Lett.*, Vol. 14, pp. 237-239, May 2004.
- S. Amari, U. Rosenberg and J. Bornemann, "A novel approach to dual and triple-mode pseudo-elliptic filter design", in 34<sup>th</sup> European Microwave Conf., Amsterdam, The Netherlands, Oct. 2004.
- U. Rosenberg, S. Amari, J. Bornemann and R. Vahldieck, "Compact pseudo-highpass filters formed cavity and iris resonators", in 34<sup>th</sup> European Microwave Conf., Amsterdam, The Netherlands, Oct. 2004.