Wide Band Single Pixel Feed

Emily McMilin, M.A.Sc. Candidate, ECE Dept, UVic

Dr. Jens Bornemann, ECE Dept, UVic,
Dr. Stéphane Claude, HIA
Nathan Wren and Piotr Czajko, ME Dept, UVic
Outline

WB+SPF and SKA
HIA WB+SPF
How WB+SPF?
Now WB+SPF?
Building WB+SPF
Testing WB+SPF
Conclusions
Peter Dewdney et al. Proceedings of the IEEE, Aug. 2009:

• "It is likely that two different arrays of antennas will be needed to cover the frequency range up to 500 MHz.
• From 500 to 1000 MHz, there are three possibilities: dense AAs, parabolic antennas with PAFs, and parabolic antennas with SPF.
• From 1000 MHz to 10 GHz, parabolic antennas with SPF are chosen."

<table>
<thead>
<tr>
<th></th>
<th>BANDWIDTH</th>
<th>BEAMWIDTH</th>
<th>PHASE CENTER</th>
<th>RETURN LOSS</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecom</td>
<td>> 20:1</td>
<td>100 deg</td>
<td>Strong</td>
<td>> 6 dB</td>
<td>$(0.7\lambda_{max})^2 \times 1.8\lambda_{max}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dependence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATA</td>
<td>23:1</td>
<td>43 deg</td>
<td>Strong</td>
<td>> 14 dB</td>
<td>$(0.5\lambda_{max})^2 \times 2.4\lambda_{max}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dependence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindgren</td>
<td>8:1</td>
<td>> 60 deg</td>
<td>Moderate</td>
<td>> 8 dB</td>
<td>$(1.1\lambda_{max})^2 \times 1.2\lambda_{max}$</td>
</tr>
<tr>
<td></td>
<td>freq.</td>
<td></td>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dependent</td>
<td></td>
<td>Dependence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalmers</td>
<td>11:1</td>
<td>62 deg</td>
<td>Frequency</td>
<td>5 dB</td>
<td>$(0.65\lambda_{max})^2 \times 2.1\lambda_{max}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Independent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QSC</td>
<td>> 10:1</td>
<td>65 deg</td>
<td>Frequency</td>
<td>10 dB</td>
<td>$(0.75\lambda_{max})^2 \times 0.2\lambda_{max}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Independent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conical Sinuous</td>
<td>> 10:1</td>
<td>65 deg</td>
<td>Frequency</td>
<td>5 dB</td>
<td>$(2.0\lambda_{max})^2 \times 0.25\lambda_{max}$</td>
</tr>
<tr>
<td>GP</td>
<td></td>
<td></td>
<td>Independent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>> 10:1</td>
<td>100 deg</td>
<td>Small</td>
<td>> 16 dB</td>
<td>$(0.5\lambda_{max})^2 \times 0.25\lambda_{max}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dependence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HIA WB+SPF

- Bandwidth: >10:1
- Beamwidth: ~60 deg
- Phase center: some dependence
- Return loss: >8 dB
- Size: \(\left(0.57 \lambda_{\text{max}}\right)^2 \pi \times 0.57 \lambda_{\text{max}} \)
- Cross polarization: <-9 dB
HIA WB+SPF's: Beamwidth: ~60 deg
HIA WB+SPF

Return loss: >8 dB

S-Parameter Magnitude in dB

• Differential-mode reflection coefficient:

\[\frac{1}{2} \left(s_{11} - s_{14} - s_{41} + s_{44} \right) \]

• For port 1 and 4 in same polarization
How WB+SPF?
Far field pattern

- Two similar antennas (scaled in spatial dimensions) have same radiation properties at the inversely scaled frequency.
- A self-similar antenna has scaled structures embedded
 - Equiangular, aka., logarithmic spirals
 - Entire structure scales with Φ
 - Log-periodic antennas
 - “Cells” scale by “tau”
- Aperture size scales
 - Low pass filter behaviour
- For finite structures:
 - Eliminate “end-effect”
 - Traveling waves
How WB+SPF?
Impedance

- Complementary structures
 - Babinet's principle
 \[Z_{metal} Z_{air} = Z^2_{freespace} / 4 \]
 \[Z_{slot} = Z^2_{freespace} / \left(4 Z_{dipole} \right) \]

- Self-complementary structures
 - Mushiake's relation
 \[Z_{metal} = Z_{air} \]
 \[Z_{metal} = Z_{freespace} / 2 = 188.5 \text{[ohms]} \]
Self-complementary
Now WB+SPF?

- Aluminum 1100 cone and antenna “petals”
- Eccostock SH-8 foam
- Eccosorb 268E paint along edge of cone?
Building WB+SPF

- Low dielectric constant epoxy
- Low dielectric constant and low dissipation factor foam
- Conductive epoxy (large fraction of colloidal silver)
- Complete this month
Testing WB+SPF

Near field range and/or far field anechoic chamber

• Two petals per polarization
• Exciting one petal with three others terminated in 50 ohms
• Complete end of next month
Conclusions

• Comparable bandwidth and beamwidth
• Some phase-center frequency dependence
 – Can be minimized, at cost of return loss
• Poor return loss (though comparable to some)
• Size is smaller than most
• Cross polarization is not as easily comparable, but likely a little worse than average
• Cost is lower, we think:
 – “all the complicated parts in one plane”
 – PCB or milling technology
• Ground plane size is maximized
• Room for improvement with many free variables
Thank you for your attention.

Questions or comments?