
SENG 475 & ECE 596C, Summer 2024 3-1

3 Assignment 1 [Assignment ID: cpp_basics]

3.1 Preamble (Please Read Carefully)
Before starting work on this assignment, it is critically important that you carefully read Section 1 (titled “General
Information”) which starts on page 1-1 of this document.

3.2 Topics Covered
This assignment covers material primarily related to the following: classes, templates.

3.3 Problems — Part A — Nonprogramming Exercises
• 8.16 a b [complexity of finding element in tree]
• 8.17 a b [complexity of summing lower triangular part of matrix]
• 8.18 a b c [complexity of array reversal]
• 8.21 a b c [complexity of computing Hamming weight]
• 8.23 [improvement possible by optimization]

3.4 Problems — Part B — Random Number Generation and Rational Arithmetic
B.1 Linear congruential generator (LCG) class (linear_congruential_generator). A linear congruential gener-

ator (LCG) is a type of pseudorandom number generator. A LCG is defined by a recurrence relation. In particular,
the generated integer sequence xn for n ∈ {1,2, . . .} is given by

xn = mod(axn−1 + c,m), (1)

where a, c, and m are integers such that m > 0, 0 < a < m, and 0 ≤ c < m. The quantity x0 (where 0 ≤ x0 < m)
is known as the seed and corresponds to the initial state of the LCG. The quantities a, c, and m are referred to as
the multiplier, increment, and modulus of the LCG, respectively. For more information on LCGs, refer to:

https://en.wikipedia.org/wiki/Linear_congruential_generator

In this exercise, a LCG class will be developed. The class is to be called linear_congruential_generator.
The source code for this class and its associated non-member functions should be placed in the following files:

(a) include/ra/random.hpp . The code that specifies the API for the linear_congruential_generator
class.

(b) lib/random.cpp . Any non-API code.

The linear_congruential_generator class should provide the following public members:

(a) int_type. This type member is the unsigned integer type used by the linear_congruential_generator
class. This type must be at least 64 bits in size.

(b) a constructor that takes the following arguments, each of type int_type: 1) multiplier a, 2) increment c,
3) modulus m, and 4) seed s (where 0≤ s< m). The fourth parameter (i.e., seed) should default to the value
returned by the default_seed (static) member function. This constructor sets the a, c, and m values of the
generator to a, c, and m, respectively. The initial state (i.e., x0) of the generator is initialized as follows. If
mod(c,m) = 0 and mod(s,m) = 0, x0 is set to 1; otherwise, x0 is set to s.

(c) move constructor and move assignment operator (which may be compiler-provided defaults if appropriate)
(d) copy constructor and copy assignment operator (which may be compiler-provided defaults if appropriate)
(e) destructor (which may be the compiler-provided default if appropriate)
(f) multiplier. This (non-static) member function returns the multiplier value (i.e., a) for the generator. The

return type is int_type.
(g) increment. This (non-static) member function returns the increment value (i.e., c) for the generator. The

return type is int_type.

Instructor: Michael D. Adams Version: 2024-04-24

https://en.wikipedia.org/wiki/Linear_congruential_generator

3-2 SENG 475 & ECE 596C, Summer 2024

(h) modulus. This (non-static) member function returns the modulus value (i.e., m) for the generator. The
return type is int_type.

(i) default_seed. This static member function returns the default seed value (i.e., x0) for all generator objects.
The value returned should always be 1. The return type is int_type.

(j) seed. This (non-static) member function restarts the sequence generation process with a new seed value
(i.e., x0). This function takes a single int_type argument s specifying the desired seed value. The function
does not return any value. If mod(c,m) = 0 and mod(s,m) = 0, x0 is set to 1; otherwise, x0 is set to s.

(k) operator(). This function advances the generator to the next position in the generated sequence and
then returns the value corresponding to this new position. This function takes no arguments and has a return
type of int_type.

(l) discard. This (non-static) member function discards the next n numbers in the generated sequence. The
function takes a single argument of type unsigned long long, specifying the value of n. The function
does not return any value.

(m) min. This (non-static) member function returns the smallest value that can potentially be output by the
generator. This value is equal to 1 if the increment parameter (i.e., c) of the generator is 0 and is equal to 0
otherwise. The return type is int_type.

(n) max. This (non-static) member function returns the largest value that can potentially be output by the
generator. This value is one less than the modulus parameter (i.e., m) of the generator. The return type is
int_type.

(o) equality operator (i.e., operator==) and inequality operator (i.e., operator!=). These op-
erators test two linear_congruential_generator objects for equality and inequality. Two
linear_congruential_generator objects are deemed to be equal if and only if they have the same
multiplier, increment, modulus, and have the same current state (i.e., the same xi value).

Note that the linear_congruential_generator class is not default constructible. The following non-member
function should also be provided:

(a) a stream inserter (i.e., operator<<). A stream inserter should be provided to allow
linear_congruential_generator objects to be written to a stream. This function should output the
following items (in order) separated by a single space (with no leading or trailing characters, including
newlines):

i. multiplier (i.e., a),
ii. increment (i.e., c),

iii. modulus (i.e., m), and
iv. current state of generator (i.e., the xi value).

As always, code must be const correct.

The linear_congruential_generator class and its associated non-member functions must be placed in a
namespace called ra::random.

The C++ standard library provides the class template std::linear_congruential_engine for generating
pseudorandom number sequences based on a LCG. It also provides two specific instances of this template called
minstd_rand0 and minstd_rand. This functionality of the standard library is likely to be quite helpful in testing
the code developed in this exercise.

The code used to test the linear_congruential_generator class should be placed in a file called
app/test_random.cpp .

B.2 Rational number class template (rational). A rational number is a number of the form x/y, where x and y
are integers and y 6= 0 (i.e., a rational number is a ratio of integers). Rational numbers are sometimes useful for
representing real numbers in contexts where the roundoff error associated with floating-point arithmetic would
be problematic.

In this exercise, a class template for representing rational numbers will be developed. The class template is to be
called rational.

Version: 2024-04-24 Instructor: Michael D. Adams

SENG 475 & ECE 596C, Summer 2024 3-3

The source code for this class and its associated non-member functions should be placed in the file
include/ra/rational.hpp .

The rational class template has a single template parameter T, which specifies the type to be used to represent
each of the numerator and denominator of the rational number. The type T is required to be a signed integral type,
excluding character types. The rational class should provide the following interface (i.e., public members):

(a) int_type. This type member is the integral type used to represent each of the numerator and denominator
of the rational number. That is, this type is simply an alias for the template parameter T.

(b) default constructor. This constructor creates a rational number with the value 0.
(c) two parameter constructor. This constructor creates a rational number with a particular numerator and

denominator. This constructor has two parameters of type int_type, which (in order) correspond to the
numerator and denominator of the rational number to be created. The second parameter has a default value
of 1. The arguments to this constructor are not subject to any constraints except that the denominator must
be nonzero. If the rational number to be constructed is specified as n/d and d = 0, the constructor must
behave as if the rational number n/d were formed by dividing the rational number n/1 by the rational
number d/1 = 0/1, which would result in division by zero. (See below for how division by zero must be
handled.)

(d) move constructor and move assignment operator (which may be compiler-provided defaults if appropriate)
(e) copy constructor and copy assignment operator (which may be compiler-provided defaults if appropriate)
(f) destructor (which may be the compiler-provided default if appropriate)
(g) numerator. This (non-static) member function returns the numerator of the rational number. The return

type is int_type.
(h) denominator. This (non-static) member function returns the denominator of the rational number. The

return type is int_type.
(i) compound assignment operators for addition, subtraction, multiplication, and division (i.e., operator+=,

operator-=, operator*=, and operator/=). These operators must be overloaded to allow a rational
number to be added to, subtracted from, multiplied by, or divided by another rational number. The return
type should follow the usual convention for compound assignment operators.

(j) truncate. This (non-static) member function returns the integer obtained by rounding the rational number
towards zero (i.e., the fractional part of the number is discarded). The return type is int_type.

(k) is_integer. This (non-static) member function is a predicate that tests if a rational number is an integer.
If the rational number is an integer, true is returned; otherwise, false is returned. (The return type is
bool.)

(l) operator!. This operator tests if a rational number is zero. The value true is returned if the number is
zero; and false is returned otherwise. The return type is bool.

(m) equality and inequality operators (i.e., operator== and operator!=). These operators provide the
usual tests for equality and inequality. For the purposes of comparison, two rational numbers are deemed
to be equal if they represent the same real value.

(n) operator<, operator>, operator<=, and operator>=. These relational operators test the less-
than, greater-than, less-than-or-equal, and greater-than-or-equal relations for rational numbers.

(o) prefix and postfix operator++. These operators provide the usual prefix and postfix increment operators.
The increment operation adds 1 to the rational number.

(p) prefix and postfix operator--. These operators provide the usual prefix and postfix decrement operators.
The decrement operation subtracts 1 from the rational number.

The following non-member functions should also be provided:

(a) unary operator+
(b) negation operator (i.e., unary operator-). This operator should return the negative of a rational number.
(c) binary operator+, binary operator-, binary operator*, and binary operator/. These operators

provide addition, subtraction, multiplication, and division operations for two rational<T> objects (with T
being the same for both objects).

(d) stream inserter (i.e., operator<<). A stream inserter must be provided for allowing a rational number to
be written to a output stream (i.e., std::ostream). The output of a rational number with numerator n and

Instructor: Michael D. Adams Version: 2024-04-24

3-4 SENG 475 & ECE 596C, Summer 2024

denominator d (where n and d are coprime and d > 0), must generate:
i. a minus character (i.e., “-”) if n < 0;

ii. one or more (decimal) digit characters corresponding to the value of |n|;
iii. a slash character (i.e., “/”); and
iv. one or more (decimal) digit characters corresponding to the value of d.

The output must not contain any whitespace characters (e.g., spaces, tabs, newlines), including leading and
trailing characters.

(e) stream extractor (i.e., operator>>). A stream extractor must be provided for allowing a rational number
to be read from an input stream (i.e., std::istream). This function must read a rational number in the
same format used by the stream inserter. If the stream data is incorrectly formatted, the stream inserter
should indicate this by forcing the stream into an error state. (The setstate member function of the
std::istream class can be used to set an error flag for a stream.)

The rational class must always represent a rational number in a manner such that

(a) the numerator n and denominator d are coprime (i.e., no common factors) so that gcd{|n| , |d|}= 1;
(b) the denominator is nonnegative.

This said, however, a user of the rational class can, for example, validly ask to construct a rational number with
a numerator and denominator of 6 and -3, respectively, in which case these values would need to be converted by
the constructor to a numerator and denominator of -2 and 1, respectively.

If an attempt is made to divide by zero, the division operation should yield the largest representable rational
value (i.e., a rational number with numerator std::numeric_limits<int_type>::max() and denominator
int_type(1)). (Note that this is true regardless of whether the number being divided by zero is positive, neg-
ative, or zero.) Construction of a rational number with a denominator equal to zero should also be treated as
division by zero. Under no circumstances should the code actually divide by zero. Furthermore, if division by
zero is attempted, the code should not terminate the program (e.g., by calling std::abort). (Although division
by zero is arguably better handled by throwing an exception, this is avoided since some students may not be
familiar with the exception feature of the language.)

All identifiers for the rational class and its supporting code (i.e., non-member functions that provide support
for the rational class) must be placed in the namespace ra::math. Again, it is extremely important that the
code be const correct.

The code used to test the rational class should be placed in a file called app/test_rational.cpp .

With regard to the truncate member function, the following is helpful to know. The C++ programming language
requires that integer division must round towards zero. So, for x and y of some integral type, the expression x / y
is guaranteed to yield a result that is consistent with rounding towards zero (i.e., truncation).

With regard to ensuring that rational numbers are maintained in the most reduced form (i.e., numerator and
denominator are coprime), the std::gcd function template (which computes the greatest common divisor of two
integers) will likely be quite helpful.

3.5 Problems — Part C — None
There is no Part C for this assignment.

Version: 2024-04-24 Instructor: Michael D. Adams

