
SENG 475 & ECE 596C, Summer 2024 1

GitHub Authentication

1 Accessing Git Repositories on GitHub
Git repositories on GitHub can be accessed using either the HTTPS/HTTP or SSH protocols. The HTTPS/HTTP
protocol is easier to use relative to the SSH protocol, as the former requires less configuration. Therefore, the use of
the HTTPS/HTTP protocol is recommended. The use of the SSH protocol is more complicated as it requires managing
SSH key pairs and configuration of SSH client software.

2 Accessing Git Repositories on GitHub via the HTTPS/HTTP Protocol
To configure GitHub for access via the HTTPS/HTTP protocol, a personal-access token (PAT) is required for the
GitHub account. For detailed instructions on how to create a PAT, see:

� https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-to
ken

The PAT created should have the following scopes:

� repo (i.e., all scopes in the repo category)

Note that the PAT is only viewable at the time that it is first created. After that time, the PAT can no longer be viewed.
So, it must be saved somewhere (securely) for future use. Since a PAT can be used to gain access to GitHub, it is
extremely important to store the PAT securely.

With GitHub, a repository URL using the HTTPS/HTTP protocol has the general form:

� https://${USER}@github.com/${ORG}/${REPO}.git

where ${USER} is a username (which is ignored by GitHub), ${ORG} is the GitHub organization or user associated
with the repository, and ${REPO} is the repository name.

The username ${USER} is ignored by GitHub. The password must be a PAT. The username is ignored by GitHub
as the PAT implicitly specifies a GitHub user.

Although GitHub ignores the username ${USER} in the Git URL, this username may be useful to other software.
For example, the username can be useful for credential-caching purposes. If multiple credentials are to be cached
simultaneously (e.g., to accommodate the use of multiple GitHub accounts), the username in the Git URL can be used
to distinguish between users for credential caching. For example, suppose that a user has a GitHub account called
home-account for personal use and a work account called work-account for work use. To allow the passwords (i.e.,
PATs) for both accounts to be cached simultaneously, Git repositories that are to be accessed using the home-account
GitHub user could be specified with ${USER} in the Git URL set to home-account, while Git repositories that
are to be accessed using the work-account GitHub user could be specified with ${USER} in the Git URL set to
work-account. Then, when the credential-caching software is queried for a password (i.e., PAT), it will be provided
with a different username (i.e., home-account or work-account) in each case, allowing for the password (i.e., PAT)
for the correct account to be provided. Again, GitHub ignores the value of ${USER}. So, changing this value has
no impact on how GitHub processes a request. The value of ${USER}, however, is used when the credential cache is
queried. In particular, the password (i.e., PAT) for the user ${USER} is requested. So, changing the value of ${USER}
does impact which password (i.e., PAT) is returned by the credential cache.

3 Accessing Git Repositories on GitHub via the SSH Protocol
To access Git repositories on GitHub via the SSH protocol, a public/private key pair is needed and the GitHub account
and SSH client software must be configured to use this key. This configuration consists of the following steps (in
order):

Instructor: Michael D. Adams Version: 2024-04-24

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token

2 SENG 475 & ECE 596C, Summer 2024

1. Create a public/private key pair. For more details, see:

� https://docs.github.com/en/github/authenticating-to-github/generating-a-new-ssh-ke
y-and-adding-it-to-the-ssh-agent

2. Add the private key to the SSH client. For more details, again see:

� https://docs.github.com/en/github/authenticating-to-github/generating-a-new-ssh-ke
y-and-adding-it-to-the-ssh-agent

3. Add the public key to the GitHub account. For more details, see:

� https://docs.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to
-your-github-account

For further details on how to configure a GitHub account with a SSH key, one can also (if needed) refer to:

� https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

With GitHub, a Git repository URL using the SSH protocol has the general form:

� ssh://${USER}@github.com/${ORG}/${REPO}.git

where ${USER} is a username (which must be git), ${ORG} is the GitHub organization or user associated with the
repository, and ${REPO} is the repository name.

The username ${USER} in the URL must be git. The actual GitHub user associated with the repository is
determined by the SSH key used for authentication.

If the ssh program is being used, it is important to note that this program may remap hostnames depending on
the contents of the ssh configuration file. This can be very useful if one needs to use multiple SSH keys with GitHub
(which is sometimes necessary when a user has multiple GitHub accounts). For example, entries like the following
could be used in the ssh configuration file in order to use a different SSH key, depending on whether the hostname
given to the ssh program is specified as work.github.com or home.github.com in the URL for a Git repository:

Settings to use for work account.
Hostname work.github.com

Username git
Hostname github.com
IdentityFile ˜/.ssh/key_file_for_work_account

Settings to use for personal account.
Hostname home.github.com

Username git
Hostname github.com
IdentityFile ˜/.ssh/key_file_for_home_account

In this example, the hostnames work.github.com and home.github.com are both remapped by the ssh program to
the hostname github.com. The same username git is used in both cases. The key file used in each case, however, is
different.

The public keys configured for a GitHub account can be accessed via a URL of the form

� https://github.com/${USER}.keys

where ${USER} is the username of the GitHub account. For example, to show the SSH public key for the GitHub
account adamstac (which is not an account owned by the course instructor), simply access the following URL:

� https://github.com/adamstac.keys

At the time of this writing, this returned the following:

Version: 2024-04-24 Instructor: Michael D. Adams

https://docs.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh
https://github.com/adamstac.keys

SENG 475 & ECE 596C, Summer 2024 3

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA1cXZQat1072d/Y5AD9y8GnamOiEDiel7/0
FVCsUTqF7WAJXvWEMlLMmqspeVMaRPSJvb1xzm5z/UUGDi6QscBx4IAVJ/OimJXS7NsNUAZJPC/
efVNn6RO+NIpfHPDpES6EoSXLHxLPyLP4OeNXxMylyzF0h+iboWqKaCKsKdSglgo9t/
zgZW4kG0dtGnQzmqrbYf3KOkV0MZOEeDyacmGWm+rcZ0mRyVAmnzd0ncHRy1YRgEnTqauX6Z3Bo+
qSfkj0cC6vl2HDodM9TRkYkPGSNeUOhj/
K48uIHCLF6bKBVjJeHQ7nmSxZErXFsw52uUcjhYqdXgXeRDGOUP6X2k7w==

(Note that the original text is all on a single line. Line breaks were added above so that the text would not run outside
the page margins.)

4 Credential Caching
During the authentication process, a user needs to provide a password/passphrase. Since having to enter a password
repeatedly is inconvenient, a credential cache is often extremely useful. A credential cache remembers each password
so that it only needs to be provided by the user when requested for the first time. In the case of subsequent requests
(assuming that the cache entry does not expire), the password is provided automatically by the credential caching
software (using the cached password).

On Linux systems, two credential caches are commonly used with Git:
� libsecret (via git-credential-libsecret)
� Git credential cache (i.e., git-credential-cache) (https://git-scm.com/docs/git-credential-cach
e)

Only relatively newer versions of Git (2.16 or later?) have support for credential caching via libsecret. If libsecret is
supported by the version of Git installed, the program git-credential-libsecret should be available somewhere
on the system (such as in the /usr/libexec/git-core directory). This program is the one that needs to be specified
to Git as the credential helper program in order for the libsecret credential cache to be used by Git. The use of libsecret
is recommended if available.

[Note: Last time that I checked, the version of Git installed on the UGLS lab machines did not appear to have
support for libsecret. The VM disk images for the course should have support for libsecret, however.]

4.1 Credential Caching via libsecret
The libsecret library provides access to keyrings that store credentials. Provided that the version of Git being used is
new enough, it should have support for libsecret.

To enable the use of the libsecret credential cache with Git, use the command:

git config --global credential.helper \
/usr/libexec/git-core/git-credential -libsecret

The cache maintained by libsecret can also be accessed using a number of other tools. A command-line interface
(CLI) front-end to libsecret is provided by the secret-tool program. A GUI front-end to libsecret is available via
the seahorse program. The GUI is quite straightforward to use. So, only examples of the CLI are given herein.

Example (using secret-tool). Suppose that the GitHub user jdoe has a GitHub PAT stored in the file github_token_file.
The PAT can be placed in the libsecret cache for GitHub access via the HTTPS/HTTP protocol using the command:

secret -tool store --label "GitHub Account jdoe" \
xdg:schema org.gnome.keyring.NetworkPassword \
server github.com protocol https user jdoe < github_token_file

After the PAT is added to the cache, the credential cache will automatically provide the PAT whenever requested
subsequently.

4.2 Credential Caching via Git Credential Cache
If the version of Git being used does not support libsecret, the Git credential cache can be used for caching credentials.
To enable the global caching of user credentials for 1 hour (i.e., 3600 seconds), use the command:

Instructor: Michael D. Adams Version: 2024-04-24

https://git-scm.com/docs/git-credential-cache
https://git-scm.com/docs/git-credential-cache

4 SENG 475 & ECE 596C, Summer 2024

git config --global credential.helper ’cache --timeout =3600’

4.3 Disabling Git Credential Caching
Sometimes, it may be desirable to disable credential caching in Git (regardless of whether the libsecret library or Git
credential cache is being used for caching). To disable all caching of user credentials (i.e., at the system, global, and
repository levels) and purge any cached values, use the following command sequence:

git config --unset credential.helper
git config --global --unset credential.helper
git config --system --unset credential.helper
git credential -cache exit

4.4 Avoiding Pop-Up Windows for Entering Credentials
When a password must be directly entered by a user, this can potentially be accomplished by using either the terminal
or a GUI. In some cases, the use of a GUI may not be desirable (e.g., when remote login is used). If a GUI is not
desired, it is possible to disable the use of one. To ensure that prompting for user credentials employs the terminal (as
opposed to, say, a pop-up window), use the following command sequence:

git config --unset core.askPass
git config --global --unset core.askPass
git config --system --unset core.askPass
unset GIT_ASKPASS
unset SSH_ASKPASS

4.5 Accessing the Gnome Keyring Without Graphical Login
The libsecret library stores its passwords in the Gnome keyring. Normally, when a graphical desktop is used, the login
session is automatically configured (at login time) with access to the Gnome keyring. When a graphical desktop is
not used (such as in the case of remote login), some set up is required to gain access to the Gnome keyring. This can
be accomplished with the following command sequence:

dbus -run-session bash
eval $(gnome -keyring -daemon -r)
export GNOME_KEYRING_CONTROL
export SSH_AUTH_SOCK

The dbus-run-session bash command will start a new (Bash) shell that is configured with access to the Gnome
keyring.

Version: 2024-04-24 Instructor: Michael D. Adams

	1 Accessing Git Repositories on GitHub
	2 Accessing Git Repositories on GitHub via the HTTPS/HTTP Protocol
	3 Accessing Git Repositories on GitHub via the SSH Protocol
	4 Credential Caching
	4.1 Credential Caching via libsecret
	4.2 Credential Caching via Git Credential Cache
	4.3 Disabling Git Credential Caching
	4.4 Avoiding Pop-Up Windows for Entering Credentials
	4.5 Accessing the Gnome Keyring Without Graphical Login

